Entanglement Entropy of Black Holes

Type: Review

Publication Date: 2011-10-21

Citations: 459

DOI: https://doi.org/10.12942/lrr-2011-8

Abstract

The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

Locations

  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • PubMed - View
  • Deleted Journal - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Quantum Geometry and Black Holes 2017 J. Fernando Barbero G.
Alejandro Pérez
+ Quantum Geometry and Black Holes 2015 J. Fernando Barbero G.
Alejandro Pérez
+ Quantum Geometry and Black Holes 2015 Alejandro Pérez
+ PDF Chat On holographic entanglement entropy of Horndeski black holes 2017 Elena Cáceres
Ravi Mohan
Phuc Nguyen
+ Euclidean path integral, entanglement entropy, and quantum boundary conditions 2021 Dong-han Yeom
+ PDF Chat Entanglement Entropy and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>T</mml:mi><mml:mover accent="true"><mml:mi>T</mml:mi><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:math> Deformation 2018 William Donnelly
Vasudev Shyam
+ PDF Chat Entanglement entropy in quantum black holes 2024 Alessio Belfiglio
Orlando Luongo
Stefano Mancini
Sebastiano Tomasi
+ PDF Chat Renormalization of entanglement entropy and the gravitational effective action 2014 Joshua H. Cooperman
Markus A. Luty
+ PDF Chat Entanglement entropy in quantum black holes 2024 Alessio Belfiglio
Orlando Luongo
Stefano Mancini
Sebastiano Tomasi
+ Black Hole Singularity, Generalized (Holographic) $c$-Theorem and Entanglement Negativity 2015 Shamik Banerjee
Partha Paul
+ PDF Chat Horizon entanglement area law from regular black hole thermodynamics 2025 Alessio Belfiglio
S. Mahesh Chandran
Orlando Luongo
Stefano Mancini
+ PDF Chat Finite entanglement entropy of black holes 2018 Stefano Giaccari
Leonardo Modesto
Lesław Rachwał
Yiwei Zhu
+ Topological Roots of Black Hole Entropy 1994 Claudio Teitelboim
+ Topological Roots of Black Hole Entropy 1994 Claudio Teitelboim
+ The dual of non-extremal area: differential entropy in higher dimensions 2018 Vijay Balasubramanian
Charles Rabideau
+ The dual of non-extremal area: differential entropy in higher dimensions 2018 Vijay Balasubramanian
Charles Rabideau
+ PDF Chat Entanglement entropy and correlations in loop quantum gravity 2017 Alexandre Feller
Etera R. Livine
+ PDF Chat Horizon entanglement area law from regular black hole thermodynamics 2024 Alessio Belfiglio
S. Mahesh Chandran
Orlando Luongo
Stefano Mancini
+ PDF Chat A note on entanglement entropy and quantum geometry 2014 Norbert Bodendorfer
+ Black Hole Entropy in Loop Quantum Gravity 2022 J. Fernando Barbero G.
Daniele Pranzetti