A bilinear approach to the restriction and Kakeya conjectures

Type: Article

Publication Date: 1998-01-01

Citations: 303

DOI: https://doi.org/10.1090/s0894-0347-98-00278-1

Abstract

Bilinear restriction estimates have appeared in work of Bourgain, Klainerman, and Machedon. In this paper we develop the theory of these estimates (together with the analogues for Kakeya estimates). As a consequence we improve the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper L Superscript p Baseline comma upper L Superscript p Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(L^p,L^p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> spherical restriction theorem of Wolff from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than 42 slash 11"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>42</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>11</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p &gt; 42/11</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than 34 slash 9"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>34</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>9</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p &gt; 34/9</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and also obtain a sharp <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper L Superscript p Baseline comma upper L Superscript q Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(L^p,L^q)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> spherical restriction theorem for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q greater-than 4 minus five twenty-sevenths"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>4</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mfrac> <mml:mn>5</mml:mn> <mml:mn>27</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding="application/x-tex">q&gt; 4 - \frac {5}{27}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Journal of the American Mathematical Society - View - PDF
  • Journal of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A bilinear approach to the restriction and Kakeya conjectures 1998 Terence Tao
Ana Vargas
Luis Vega
+ Bilinear Restriction Theory 2019 Ciprian Demeter
+ The restriction and Kakeya conjectures 2014 Richard Stedman
+ PDF Chat Bilinear Fourier Restriction Theorems 2012 Ciprian Demeter
S. Zubin Gautam
+ PDF Linear and bilinear 𝑇(𝑏) theorems à la Stein 2015 Árpád Bényi
Tadahiro Oh
+ PDF An improved bilinear restriction estimate for the paraboloid in $$\mathbb {R}^3$$ 2023 Changkeun Oh
+ A note on the bilinear Bogolyubov theorem: Transverse and bilinear sets 2019 Pierre‐Yves Bienvenu
Diego González-Sánchez
Ángel Martínez
+ PDF Transference and Restriction of Bilinear Fourier Multipliers on Orlicz Spaces 2024 Óscar Blasco
Rüya Üster
+ A footnote to the large sieve 1977 Srimeenakshi Srinivasan
+ Bilinear forms with Kloosterman fractions 1997 William Duke
John Friedlander
Henryk Iwaniec
+ PDF A note on bilinear forms 1933 R. E. A. C. Paley
+ Bilinear considerations 2023 Ben Krause
+ The principle of the large sieve 2008 Emmanuel Kowalski
+ A Note on Bilinear Forms 1936 H. R. Pitt
+ PDF Correction to: Tightening methods based on nontrivial bounds on bilinear terms 2021 Yifu Chen
Christos T. Maravelias
+ Restriction and Kakeya phenomena for finite fields 2002 Gerd Mockenhaupt
Terence Tao
+ A bilinear version of Bogolyubov’s theorem 2020 W. T. Gowers
Luka Milićević
+ A Conjecture on the Extension of Bilinear Functionals 1967 T. L. Hayden
+ Bilinear extrapolation and a limiting case of a theorem by Cwikel 1994 Mario Milman
+ A Proof of a Theorem on Bilinear Forms 1931 R. E. A. C. Paley