Equivalence of a complex<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>-symmetric quartic Hamiltonian and a Hermitian quartic Hamiltonian with an anomaly

Type: Article

Publication Date: 2006-07-24

Citations: 89

DOI: https://doi.org/10.1103/physrevd.74.025016

Abstract

In a recent paper Jones and Mateo used operator techniques to show that the non-Hermitian $\mathcal{P}\mathcal{T}$-symmetric wrong-sign quartic Hamiltonian $H=\frac{1}{2}{p}^{2}\ensuremath{-}g{x}^{4}$ has the same spectrum as the conventional Hermitian Hamiltonian $\stackrel{\texttildelow{}}{H}=\frac{1}{2}{p}^{2}+4g{x}^{4}\ensuremath{-}\sqrt{2g}x$. Here, this equivalence is demonstrated very simply by means of differential-equation techniques and, more importantly, by means of functional-integration techniques. It is shown that the linear term in the Hermitian Hamiltonian is anomalous; that is, this linear term has no classical analog. The anomaly arises because of the broken parity symmetry of the original non-Hermitian $\mathcal{P}\mathcal{T}$-symmetric Hamiltonian. This anomaly in the Hermitian form of a $\mathcal{P}\mathcal{T}$-symmetric quartic Hamiltonian is unchanged if a harmonic term is introduced into $H$. When there is a harmonic term, an immediate physical consequence of the anomaly is the appearance of bound states; if there were no anomaly term, there would be no bound states. Possible extensions of this work to $\ensuremath{-}{\ensuremath{\phi}}^{4}$ quantum field theory in higher-dimensional space-time are discussed.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Path-integral derivation of the anomaly for the Hermitian equivalent of the complex<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:math>-symmetric quartic Hamiltonian 2006 H. F. Jones
Juan Pablo Mateo Tomé
R. J. Rivers
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="script">PT</mml:mi></mml:math>-symmetric quantum electrodynamics 2005 Carl M. Bender
Inés Cavero-Peláez
Kimball A. Milton
K. V. Shajesh
+ PDF Chat Disappearing<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>operator 2007 H. F. Jones
R. J. Rivers
+ PDF Chat Ordinary versus<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>-symmetric<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>ϕ</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math>quantum field theory 2012 Carl M. Bender
Vincenzo Branchina
Emanuele Messina
+ PDF Chat Erratum: Extension of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>-symmetric quantum mechanics to quantum field theory with cubic interaction [Phys. Rev. D<b>70</b>, 025001 (2004)] 2005 Carl M. Bender
Dorje C. Brody
H. F. Jones
+ PDF Chat -symmetric versus Hermitian formulations of quantum mechanics 2006 Carl M. Bender
Junhua Chen
Kimball A. Milton
+ PDF Chat Non-Hermitian quantum Hamiltonians with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math>symmetry 2010 Katherine Jones-Smith
Harsh Mathur
+ PDF Chat PSEUDO-HERMITIAN REPRESENTATION OF QUANTUM MECHANICS 2010 Alí Mostafazadeh
+ PDF Chat Introduction to 𝒫𝒯-symmetric quantum theory 2005 Carl M. Bender
+ PDF Chat ${\mathcal{P}}{\mathcal{T}}$-symmetric interpretation of the electromagnetic self-force 2015 Carl M. Bender
Mariagiovanna Gianfreda
+ Non-Hermitian quantum mechanics viewed from quantum mechanics 2012 Yan-Gang Miao
Zhen-Ming Xu
+ PDF Chat The<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">C</mml:mi></mml:math>operator in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>-symmetric quantum field theory transforms as a Lorentz scalar 2005 Carl M. Bender
Sebastian F. Brandt
Junhua Chen
Qinghai Wang
+ PDF Chat Equivalent Hermitian Hamiltonian for the non-Hermitian<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>−</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math>potential 2006 H. F. Jones
Juan Pablo Mateo Tomé
+ PDF Chat Novel phase in the phase structure of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mi>g</mml:mi><mml:msup><mml:mi>ϕ</mml:mi><mml:mn>4</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:mi>h</mml:mi><mml:msup><mml:mi>ϕ</mml:mi><mml:mn>6</mml:mn></mml:msup><mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>field theoretic model 2007 Abouzeid M. Shalaby
+ PDF Chat Non-Hermitian Hamiltonians and Similarity Transformations 2015 Francisco M. Fernández
+ Three alternative model-building strategies using quasi-Hermitian time-dependent observables 2023 Miloslav Znojil
+ Time-dependent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">C</mml:mi></mml:math>-operators as Lewis-Riesenfeld invariants in non-Hermitian theories 2022 Andreas Fring
Takano Taira
Rebecca Tenney
+ $\mathcal{PT-}$Symmetric and non-Hermitian theories outside their Stokes Wedges 2012 Abouzeid M. Shalaby
+ Symmetries of the complex Dirac-K�hler equation 2005 I.Yu. Krivsky
Robert R. Lompay
В. М. Симулик
+ PDF Chat Algebraic analysis of non-Hermitian quadratic Hamiltonians 2023 Francisco M. Fernández

Works That Cite This (66)

Action Title Year Authors
+ PDF Chat Hypercomplex Fock states for discrete electromagnetic Schrödinger operators: A Bayesian probability perspective 2017 Nelson Faustino
+ PDF Chat ${\cal {PT}}$ PT symmetric, Hermitian and $\mathcal P$P-self-adjoint operators related to potentials in ${\cal {PT}}$PT quantum mechanics 2012 T. Ya. Azizov
Carsten Trunk
+ PDF Chat Isospectral hermitian counterpart of complex nonhermitian Hamiltonian <i>p</i><sup>2</sup> – <i>gx</i><sup>4</sup> + <i>a</i>/<i>x</i><sup>2</sup> 2013 Asiri Nanayakkara
Thilagarajah Mathanaranjan
+ PDF Chat Phantom without phantom or how the PT symmetry saves us from the Big Rip 2008 A. A. Andrianov
F. Cannata
Alexander Yu. Kamenshchik
Daniele Regoli
+ PDF Chat Exact isospectral pairs of {\cal P}{\cal T} symmetric Hamiltonians 2008 Carl M. Bender
Daniel Hook
+ PDF Chat PSEUDO-HERMITIAN REPRESENTATION OF QUANTUM MECHANICS 2010 Alí Mostafazadeh
+ PDF Chat Comment on ‘Numerical estimates of the spectrum for anharmonic PT symmetric potentials’ 2013 Paolo Amore
Francisco M. Fernández
+ PDF Chat Double-scaling limit of the O(<i>N</i>)-symmetric anharmonic oscillator 2013 Carl M. Bender
Sarben Sarkar
+ PDF Chat Lefschetz thimbles and quantum phases in zero-dimensional bosonic models 2020 Bharathkumar Radhakrishnan
Anosh Joseph
+ PDF Chat The structure of supersymmetry in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="script">PT</mml:mi></mml:math> symmetric quantum mechanics 2009 D. Bazeia
Ashok Das
L. Greenwood
L. Losano