Lyapunov Exponents from Kinetic Theory for a Dilute, Field-Driven Lorentz Gas

Type: Article

Publication Date: 1996-09-02

Citations: 37

DOI: https://doi.org/10.1103/physrevlett.77.1974

Abstract

Positive and negative Lyapunov exponents for a dilute, random, two-dimensional Lorentz gas in an applied field, $\stackrel{\ensuremath{\rightarrow}}{E}$, in a steady state at constant energy are computed to order ${E}^{2}$. The results are ${\ensuremath{\lambda}}_{\ifmmode\pm\else\textpm\fi{}}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}{\ensuremath{\lambda}}_{\ifmmode\pm\else\textpm\fi{}}^{0}{\ensuremath{-}a}_{\ifmmode\pm\else\textpm\fi{}}(\mathrm{qE}/\mathrm{mv}{)}^{2}{t}_{0}$ where ${\ensuremath{\lambda}}_{\ifmmode\pm\else\textpm\fi{}}^{0}$ are the exponents for the field-free Lorentz gas, ${a}_{+}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}11/48$, ${a}_{\ensuremath{-}}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}7/48$, ${t}_{0}$ is the mean free time between collisions, $q$ is the charge, $m$ is the mass, and $v$ is the speed of the particle. The calculation is based on an extended Boltzmann equation in which a radius of curvature, characterizing the separation of two nearby trajectories, is one of the variables in the distribution function. The analytical results are in excellent agreement with computer simulations.

Locations

  • Physical Review Letters - View
  • arXiv (Cornell University) - View - PDF
  • Utrecht University Repository (Utrecht University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Long-time-tail Effects on Lyapunov Exponents of a Random, Two-dimensional Field-driven Lorentz Gas 2000 Debabrata Panja
J. R. Dorfman
Henk van Beijeren
+ Kinetic Theory Estimates for the Kolmogorov-Sinai Entropy and the Largest Lyapunov Exponents for Dilute, Hard-Ball Gases and for Dilute, Random Lorentz Gases 1999 Henk van Beijeren
R. van Zon
J. R. Dorfman
+ PDF Chat Chaotic properties of dilute two- and three-dimensional random Lorentz gases: Equilibrium systems 1998 Henk van Beijeren
Arnulf Latz
J. R. Dorfman
+ PDF Chat Systematic Density Expansion of the Lyapunov Exponents for a Two-Dimensional Random Lorentz Gas 2006 H. V. Kruis
Debabrata Panja
Henk van Beijeren
+ PDF Chat Lyapunov Exponents and Kolmogorov-Sinai Entropy for the Lorentz Gas at Low Densities 1996 Henk van Beijeren
J. R. Dorfman
+ PDF Chat Lyapunov spectrum of the many-dimensional dilute random Lorentz gas 2004 Astrid S. de Wijn
Henk van Beijeren
+ PDF Chat Kinetic Theory Estimates for the Kolmogorov-Sinai Entropy, and the Largest Lyapunov Exponents for Dilute, Hard Ball Gases and for Dilute, Random Lorentz Gases 2000 Ramses van Zon
Henk van Beijeren
J. R. Dorfman
+ PDF Chat Chaotic properties of dilute two- and three-dimensional random Lorentz gases. II. Open systems 2000 Henk van Beijeren
Arnulf Latz
J. R. Dorfman
+ PDF Chat Mean-Field Theory for Lyapunov Exponents and Kolmogorov-Sinai Entropy in Lorentz Lattice Gases 1995 M. H. Ernst
J. R. Dorfman
R. Nix
Donald J. Jacobs
+ Lyapunov Exponents and Kolmogorov-Sinai Entropy for the Lorentz Gas at Low Densities 1995 Henk van Beijeren
J. R. Dorfman
+ PDF Chat Measures with infinite Lyapunov exponents for the periodic Lorentz gas 1996 N. Chernov
Serge Troubetzkoy
+ PDF Chat Kolmogorov-Sinai entropy for dilute gases in equilibrium 1997 Henk van Beijeren
J. R. Dorfman
Harald A. Posch
Christoph Dellago
+ Lyapunov functionals for a Maxwell gas 1992 Giuseppe Toscani
+ Comparison of non-relativistic and relativistic Lyapunov exponents for a low-speed system 2014 Shiuan-Ni Liang
Boon Leong Lan
+ Kinetic Theory of Dynamical Systems 1999 Ramses van Zon
Henk van Beijeren
J. R. Dorfman
+ PDF Chat Aggregation of inertial particles in random flows 2005 B. Mehlig
Michael Wilkinson
Kevin Duncan
Thomas Weber
Mats Ljunggren
+ Lyapunov Exponents for Random Dynamical Systems 2009 Thai Son Doan
+ Long-time behaviour and propagation of chaos for mean field kinetic particles 2016 Pierre Monmarché
+ Environment-averaged LĂ©vy-Lorentz gas 2018 Mattia Radice
Manuele Onofri
Roberto Artuso
Giampaolo Cristadoro
+ PDF Chat Largest Lyapunov Exponent for Many Particle Systems at Low Densities 1998 Ramses van Zon
Henk van Beijeren
Christoph Dellago