Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems

Type: Article

Publication Date: 1992-03-01

Citations: 5083

DOI: https://doi.org/10.1137/0913035

Locations

  • SIAM Journal on Scientific and Statistical Computing - View

Similar Works

Action Title Year Authors
+ Generalized conjugate gradient squared 1996 Diederik R. Fokkema
Gérard L. G. Sleijpen
H.A. van der Vorst
+ BiCR variants of the hybrid BiCG methods for solving linear systems with nonsymmetric matrices 2009 Kuniyoshi Abe
Gérard L. G. Sleijpen
+ A composite step bi-conjugate gradient algorithm for nonsymmetric linear systems 1994 Randolph E. Bank
Tony F. Chan
+ Conjugate gradient (CG)-type method for the solution of Newton's equation within optimization frameworks 2004 Giovanni Fasano
+ Variant Implementations of SCBiCG Method for Linear Equations with Complex Symmetric Matrices 2015 Kuniyoshi Abe
Seiji Fujino
+ PDF Chat An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems 2000 Jocelyne Erhel
Frédéric Guyomarc'h
+ A Smoothed Conjugate Residual Squared Algorithm for Solving Nonsymmetric Linear Systems 2009 Jing Zhao
Jianhua Zhang
+ A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems 1994 Tony F. Chan
Tedd Szeto
+ A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems 1994 Tony F. Chan
Efstratios Gallopoulos
Valeria Simoncini
Tedd Szeto
Christopher Tong
+ cPCG: Efficient and Customized Preconditioned Conjugate Gradient Method for Solving System of Linear Equations 2019
+ Conjugate gradient solution of linear equations 1998 Per Brinch Hansen
+ PDF Chat A generalization of the method of conjugate gradients for solving systems of linear algebraic equations 1954 J. H. Curtiss
+ A Generalization of the Method of Conjugate Gradients for Solving Systems of Linear Algebraic Equations 1954 J. H. Curtiss
+ A generalized conjugate gradient method for non-symmetric systems of linear equations. 2007 Paul Concus
Gene H. Golub
+ Generalized product-type methods based on bi-conjugate gradient (GPBiCG) for solving shifted linear systems 2016 Mehdi Dehghan
Reza MohammadiArani
+ The matrix iterative methods for solving a class of generalized coupled Sylvester-conjugate linear matrix equations 2015 Yajun Xie
Changfeng Ma
+ PDF Chat A cooperative conjugate gradient method for linear systems permitting efficient multi-thread implementation 2017 Amit Bhaya
Pierre‐Alexandre Bliman
Guilherme Niedu
Fernando Pazos
+ GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems 1997 Shao‐Liang Zhang
+ The conjugate-gradient method for solving linear systems 1956 Magnus R. Hestenes
+ PDF Chat A cooperative conjugate gradient method for linear systems permitting multithread implementation of low complexity 2012 Amit Bhaya
Pierre‐Alexandre Bliman
Guilherme Niedu
Fernando Pazos