Type: Article
Publication Date: 2003-10-21
Citations: 7
DOI: https://doi.org/10.1002/mana.200310106
Abstract In this paper we continue to study the spectral norms and their completions ([4]) in the case of the algebraic closure \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \overline {\mathbb Q} $ \end{document} of ℚ in ℂ. Let \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} be the completion of \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \overline {\mathbb Q} $ \end{document} relative to the spectral norm. We prove that \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} can be identified with the R‐subalgebra of all symmetric functions of C ( G ), where C ( G ) denotes the ℂ‐Banach algebra of all continuous functions defined on the absolute Galois group G = Gal \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ {\overline {\mathbb Q}} / {\mathbb Q} $ \end{document} . We prove that any compact, closed to conjugation subset of ℂ is the pseudo‐orbit of a suitable element of \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} . We also prove that the topological closure of any algebraic number field in \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} is of the form \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $\widetilde{\mathbb{Q}[x]}$ \end{document} with x in \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} .
Action | Title | Year | Authors |
---|---|---|---|
+ | Spectral norms on valued fields | 2001 |
Vicenţiu Paşol Angel Popescu Nicolae Popescu |