On the spectral norm of algebraic numbers

Type: Article

Publication Date: 2003-10-21

Citations: 7

DOI: https://doi.org/10.1002/mana.200310106

Abstract

Abstract In this paper we continue to study the spectral norms and their completions ([4]) in the case of the algebraic closure \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \overline {\mathbb Q} $ \end{document} of ℚ in ℂ. Let \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} be the completion of \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \overline {\mathbb Q} $ \end{document} relative to the spectral norm. We prove that \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} can be identified with the R‐subalgebra of all symmetric functions of C ( G ), where C ( G ) denotes the ℂ‐Banach algebra of all continuous functions defined on the absolute Galois group G = Gal \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ {\overline {\mathbb Q}} / {\mathbb Q} $ \end{document} . We prove that any compact, closed to conjugation subset of ℂ is the pseudo‐orbit of a suitable element of \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} . We also prove that the topological closure of any algebraic number field in \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} is of the form \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $\widetilde{\mathbb{Q}[x]}$ \end{document} with x in \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} .

Locations

  • Mathematische Nachrichten - View - PDF

Similar Works

Action Title Year Authors
+ On the size of the fibers of spectral maps induced by semialgebraic embeddings 2014 José F. Fernando
+ On the size of the fibers of spectral maps induced by semialgebraic embeddings 2014 José F. Fernando
+ Spectral semi-norm of a {$p$}-adic Banach algebra 1998 Alain Escassut
Nicolas Maïnetti
+ Spectra and the Steenrod algebra 1986 Gian‐Carlo Rota
+ Le théorème spectral 2012 Marc Lenoir
+ PDF Chat Relative Spectral Norm on Algebraic Numbers 2009 Angel Popescu
Sobia Sultana
+ Induced Norms of the Schur Multiplication Operator : シュワー積作用素の誘導ノルム 1990 Kazuyoshi Ōkubo
+ On the norm and spectral radius of Hermitian elements 2008 Саулюс Норвидас
+ On algebraic properties of the spectrum and spectral radius of elements in a unital algebra 2015 Mati Abel
+ The Siegel norm of algebraic numbers 2012 Florin Stan
Alexandru Zaharescu
+ A NOTE ON PRODUCTS OF SPECTRAL MEASURES 1973 R. M. Dudley
+ PDF Chat RETRACTED ARTICLE: Maps preserving peripheral local spectrum of skew Jordan product of operators 2023 Youssef Chakir
El Houcine El Bouchibti
+ Spectral norms on valued fields 2001 Vicenţiu Paşol
Angel Popescu
Nicolae Popescu
+ Spectral Norm of Affinoid Algebras 2003
+ PDF Chat Completion of norms for $C(X,\,Q)$ 1971 Edith H. Luchins
+ Normed Rings and Spectral Representation 1968 Kôsaku Yosida
+ Normed Rings and Spectral Representation 1971 Kôsaku Yosida
+ Normed Rings and Spectral Representation 1965 Kôsaku Yosida
+ Normed Rings and Spectral Representation 1965 Kôsaku Yosida
+ Normed Rings and Spectral Representation 1974 Kôsaku Yosida

Works Cited by This (1)

Action Title Year Authors
+ Spectral norms on valued fields 2001 Vicenţiu Paşol
Angel Popescu
Nicolae Popescu