Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
A geometric alternative to Nesterov's accelerated gradient descent
Sébastien Bubeck
,
Yin Tat Lee
,
Mohit Singh
Type:
Preprint
Publication Date:
2015-06-26
Citations:
98
View
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
A geometric alternative to Nesterov's accelerated gradient descent
2015
Sébastien Bubeck
Yin Tat Lee
Mohit Singh
+
Nesterov Acceleration for Riemannian Optimization
2022
Jungbin Kim
Insoon Yang
+
PDF
Chat
Optimal Convergence Rates for Nesterov Acceleration
2019
Jean–François Aujol
Charles Dossal
Aude Rondepierre
+
Optimal convergence rates for Nesterov acceleration
2018
Jean François Aujol
Charles Dossal
Aude Rondepierre
+
PDF
Chat
Accelerated Bregman proximal gradient methods for relatively smooth convex optimization
2021
Filip Hanzely
Peter Richtárik
Lin Xiao
+
Accelerated Bregman Proximal Gradient Methods for Relatively Smooth Convex Optimization
2018
Filip Hanzely
Peter Richtárik
Lin Xiao
+
Optimal convergence rates for Nesterov acceleration
2018
Jean François Aujol
Charles Dossal
Aude Rondepierre
+
Understanding Nesterov's Acceleration via Proximal Point Method
2020
Kwangjun Ahn
Suvrit Sra
+
Nesterov Acceleration for Equality-Constrained Convex Optimization via Continuously Differentiable Penalty Functions
2020
Priyank Srivastava
Jorge Cortés
+
A single potential governing convergence of conjugate gradient, accelerated gradient and geometric descent
2017
Sahar Karimi
Stephen A. Vavasis
+
A single potential governing convergence of conjugate gradient, accelerated gradient and geometric descent
2017
Sahar Karimi
Stephen A. Vavasis
+
Towards Riemannian Accelerated Gradient Methods
2018
Hongyi Zhang
Suvrit Sra
+
"Convex Until Proven Guilty": Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions
2017
Yair Carmon
Oliver Hinder
John C. Duchi
Aaron Sidford
+
"Convex Until Proven Guilty": Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions
2017
Yair Carmon
Oliver Hinder
John C. Duchi
Aaron Sidford
+
Convex until proven guilty: dimension-free acceleration of gradient descent on non-convex functions
2017
Yair Carmon
John C. Duchi
Oliver Hinder
Aaron Sidford
+
An accelerated minimal gradient method with momentum for strictly convex quadratic optimization
2021
Harry Oviedo
Oscar Dalmau
Rafael Herrera
+
NEON+: Accelerated Gradient Methods for Extracting Negative Curvature for Non-Convex Optimization
2017
Yi Xu
Rong Jin
Tianbao Yang
+
A novel, simple interpretation of Nesterov’s accelerated method as a combination of gradient and mirror descent
2014
Zeyuan Allen Zhu
Lorenzo Orecchia
+
PDF
Chat
Accelerated optimization algorithms and ordinary differential equations: the convex non Euclidean case
2024
Paul Dobson
J. M. Sanz‐Serna
Konstantinos C. Zygalakis
+
PDF
Chat
A Generalized Accelerated Composite Gradient Method: Uniting Nesterov's Fast Gradient Method and FISTA
2020
Mihai I. Florea
Sergiy A. Vorobyov
Cited by (86)
Action
Title
Year
Authors
+
PDF
Chat
Efficient first-order methods for convex minimization: a constructive approach
2019
Yoel Drori
Adrien Taylor
+
PDF
Chat
Continuous-Time Accelerated Methods via a Hybrid Control Lens
2019
Arman Sharifi Kolarijani
Peyman Mohajerin Esfahani
Tamás Keviczky
+
PDF
Chat
A Continuized View on Nesterov Acceleration for Stochastic Gradient Descent and Randomized Gossip
2021
Mathieu Even
Raphaël Berthier
Francis Bach
Nicolas Flammarion
Pierre Gaillard
Hadrien Hendrikx
Laurent Massoulié
Adrien Taylor
+
PDF
Chat
Fast and safe: accelerated gradient methods with optimality certificates and underestimate sequences
2021
Majid Jahani
Naga V. C. Gudapati
Chenxin Ma
Rachael Tappenden
Martin Takáč
+
Variational PDEs for Acceleration on Manifolds and Application to Diffeomorphisms
2018
Ganesh Sundaramoorthi
Anthony Yezzi
+
Even faster accelerated coordinate descent using non-uniform sampling
2016
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yuan Yang
+
Acceleration in First Order Quasi-strongly Convex Optimization by ODE Discretization
2019
Jingzhao Zhang
Suvrit Sra
Ali Jadbabaie
+
A Unifying Framework of Accelerated First-Order Approach to Strongly Monotone Variational Inequalities
2021
Kevin Huang
Shuzhong Zhang
+
Chebyshev Center of the Intersection of Balls: Complexity, Relaxation and Approximation
2019
Yong Xia
Meijia Yang
Shu Wang
+
A variable metric mini-batch proximal stochastic recursive gradient algorithm with diagonal Barzilai-Borwein stepsize
2020
Tengteng Yu
Xinwei Liu
Yu‐Hong Dai
Jie Sun
+
PDF
Chat
A Faster Cutting Plane Method and its Implications for Combinatorial and Convex Optimization
2015
Yin Tat Lee
Aaron Sidford
Sam Chiu-wai Wong
+
Generalized Momentum-Based Methods: A Hamiltonian Perspective
2019
Jelena Diakonikolas
Michael I. Jordan
+
A Dynamical Systems Perspective on Nesterov Acceleration
2019
Michael Muehlebach
Michael I. Jordan
+
Asymptotic Analysis via Stochastic Differential Equations of Gradient Descent Algorithms in Statistical and Computational Paradigms
2017
Yazhen Wang
+
Potential Function-based Framework for Making the Gradients Small in Convex and Min-Max Optimization
2021
Jelena Diakonikolas
Puqian Wang
+
PDF
Chat
Proximal methods for sparse optimal scoring and discriminant analysis
2022
Summer Atkins
Guðmundur Einarsson
Line Katrine Harder Clemmensen
Brendan Ames
+
Tensor optimal transport, distance between sets of measures and tensor scaling
2020
Shmuel Friedland
+
Potential-based analyses of first-order methods for constrained and composite optimization
2019
Courtney Paquette
Stephen A. Vavasis
+
PDF
Chat
The Approximate Duality Gap Technique: A Unified Theory of First-Order Methods
2019
Jelena Diakonikolas
Lorenzo Orecchia
+
The Fastest Known Globally Convergent First-Order Method for Minimizing Strongly Convex Functions
2017
Bryan Van Scoy
Randy A. Freeman
Kevin Lynch
+
The condition number of a function relative to a set
2019
David H. Gutman
Javier Peña
+
Convergence of first-order methods via the convex conjugate
2017
Javier Peña
+
Convergence rates of proximal gradient methods via the convex conjugate
2018
David H. Gutman
Javier Peña
+
Perturbed Fenchel duality and first-order methods
2018
David H. Gutman
Javier Peña
+
The condition of a function relative to a polytope
2018
David H. Gutman
Javier Peña
+
Direct Runge-Kutta Discretization Achieves Acceleration
2018
Jingzhao Zhang
Aryan Mokhtari
Suvrit Sra
Ali Jadbabaie
+
PDF
Chat
Accelerated Optimization in the PDE Framework: Formulations for the Manifold of Diffeomorphisms
2022
Ganesh Sundaramoorthi
Anthony Yezzi
Minas Benyamin
+
PDF
Chat
Exact Worst-Case Performance of First-Order Methods for Composite Convex Optimization
2017
Adrien Taylor
Julien M. Hendrickx
François Glineur
+
A New Class of Composite Objective Multi-step Estimating-sequence Techniques (COMET)
2021
Endrit Dosti
Sergiy A. Vorobyov
Themistoklis Charalambous
+
Accelerated Methods for Non-Convex Optimization
2016
Yair Carmon
John C. Duchi
Oliver Hinder
Aaron Sidford
+
Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent
2017
Chi Jin
Praneeth Netrapalli
Michael I. Jordan
+
An Optimal High-Order Tensor Method for Convex Optimization
2018
Bo Jiang
Haoyue Wang
Shuzhong Zhang
+
Dissipativity Theory for Nesterov's Accelerated Method
2017
Bin Hu
Laurent Lessard
+
A Variational Perspective on Accelerated Methods in Optimization
2016
Andre Wibisono
Ashia C. Wilson
Michael I. Jordan
+
The Common-directions Method for Regularized Empirical Risk Minimization
2019
Po-Wei Wang
Ching-pei Lee
Chih‐Jen Lin
+
Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond
2019
Oliver Hinder
Aaron Sidford
Nimit S. Sohoni
+
Fast and Safe: Accelerated gradient methods with optimality certificates and underestimate sequences
2017
Majid Jahani
Naga V. C. Gudapati
Chenxin Ma
Rachael Tappenden
Martin Takáč
+
An Explicit Convergence Rate for Nesterov's Method from SDP
2018
Sam Safavi
Bikash Joshi
Guilherme França
José Bento
+
An optimal first order method based on optimal quadratic averaging
2016
Dmitriy Drusvyatskiy
Maryam Fazel
Scott Roy
+
Acceleration Methods
2021
Alexandre d’Aspremont
Damien Scieur
Adrien Taylor
Citing (3)
Action
Title
Year
Authors
+
Introductory Lectures on Convex Optimization: A Basic Course
2014
Ю Е Нестеров
+
Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent
2014
Zeyuan Allen-Zhu
Lorenzo Orecchia
+
Convex Optimization: Algorithms and Complexity
2014
Sébastien Bubeck