The Patch Topology and the Ultrafilter Topology on the Prime Spectrum of a Commutative Ring

Type: Article

Publication Date: 2008-08-13

Citations: 24

DOI: https://doi.org/10.1080/00927870802110326

Abstract

Abstract Let R be a commutative ring and let Spec(R) denote the collection of prime ideals of R. We define a topology on Spec(R) by using ultrafilters and demonstrate that this topology is identical to the well-known patch or constructible topology. The proof is accomplished by use of a von Neumann regular ring canonically associated with R. Key Words: Constructible topologyPatch topologyPrime spectrumUltrafiltervon Neumann regular ringZariski topology2000 Mathematics Subject Classification: 13A1513A1713B1014A05 Notes Communicated by I. Swanson.

Locations

  • arXiv (Cornell University) - View - PDF
  • Applied General Topology (Universitat Politècnica de València) - View - PDF
  • Communications in Algebra - View

Similar Works

Action Title Year Authors
+ The patch topology and the ultrafilter topology on the prime spectrum of a commutative ring 2007 Marco Fontana
K. Alan Loper
+ PDF Chat Spectral Spaces and Ultrafilters 2013 Carmelo A. Finocchiaro
+ PDF Chat The equality of the Patch topology and the Ultrafilter topology: A shortcut 2013 Luz M. Ruza
Jorge Vielma
+ The Zariski and Patch topologies of the spectrum of a ring 1979 Willy Brandal
+ Prime ideals in the product of commutative rings with identity 1994 Christopher J. O’Donnell
+ Ring topologies on the quotient field of a Dedekind domain 1973 J. Heine
Seth Warner
+ On the Prime Spectrum of a Module and Zariski Topologies 2010 H. Ansari-Toroghy
R. Ovlyaee-Sarmazdeh
+ New methods toward the patch and flat topologies with applications 2016 Abolfazl Tarizadeh
+ New methods toward the patch and flat topologies with applications 2016 Abolfazl Tarizadeh
+ On P-von Neumann Regular Rings 2009 Chahrazade Bakkari
+ PDF Chat Zariski subspace topologies on ideals 2019 Ortaç Öneş
Mustafa Alkan
+ PDF Chat Prime Ideal Structure of Rings of Bounded Continuous Functions 1968 Mark Mandelker
+ Modules with Noetherian Spectrum 2010 Chin-Pi Lu
+ Prime ideals in rings of continuous functions 1958 Carl W. Kohls
+ On Prime Spectrums of Commutative Rings 2006 Dancheng Lu
YU Wei-hong
+ PDF Chat The Radical-Zariski topology on the radical spectrum of modules 2022 Hosein Fazaeli Moghimi
Javad Bagheri Harehdashti
+ Topological spectrum and perfectoid Tate rings 2020 Dimitri Dine
+ PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE 2020 H. Bijari
Kazem Khashyarmanesh
Hosein Fazaeli Moghim
+ PDF Chat Topological properties of semigroup primes of a commutative ring 2017 Carmelo A. Finocchiaro
Marco Fontana
Dario Spirito
+ PDF Chat Realization of spaces of commutative rings 2024 Laura Cossu
Bruce Olberding