Vortex filament equation for a regular polygon

Type: Article

Publication Date: 2014-11-14

Citations: 27

DOI: https://doi.org/10.1088/0951-7715/27/12/3031

Abstract

In this paper, we study the evolution of the vortex filament equation, with X(s, 0) being a regular planar polygon. Using algebraic techniques, supported by full numerical simulations, we give strong evidence that X(s, t) is also a polygon at any rational time; moreover, it can be fully characterized, up to a rigid movement, by a generalized quadratic Gauß sum.

Locations

  • Nonlinearity - View
  • arXiv (Cornell University) - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On the Evolution of the Vortex Filament Equation for regular $M$-polygons with nonzero torsion 2019 Francisco de la Hoz
Sandeep Kumar
Luis Vega
+ On the Evolution of the Vortex Filament Equation for regular $M$-polygons with nonzero torsion 2019 Francisco de la Hoz
Sandeep Kumar
Luis Vega
+ PDF Chat On the Evolution of the Vortex Filament Equation for Regular $M$-Polygons with Nonzero Torsion 2020 Francisco de la Hoz
Sandeep Kumar
Luis Vega
+ Vortex Filament Equation for a regular polygon in the hyperbolic plane 2020 Francisco de la Hoz
Sandeep Kumar
Luis Vega
+ Steady vortex patch with polygonal symmetry for the planar Euler equations in a disc 2019 Daomin Cao
Jie Wan
Guodong Wang
+ PDF Chat Differential geometry of the vortex filament equation 1998 Yukinori Yasui
Norihito Sasaki
+ Recent analytical results in 4D-dynamical triangulations 2000 J. Ambjørn
Mauro Carfora
Annalisa Marzuoli
P. Villani
+ Euler polygonal method for metric dynamical systems 2007 Juan J. Nieto
Rosana Rodrı́guez-López
+ Vortex patches choreography for active scalar equations 2020 Claudia García
+ PDF Chat Vortex Patches Choreography for Active Scalar Equations 2021 Claudia García
+ PDF Chat Two-point functions in 4D dynamical triangulation 1995 Bas V. de Bakker
Jan Smit
+ PDF Chat Dynamical Effects on the Geometric Phase 2018 Laura Meißner
Tore Niermann
Dirk Berger
Michael Lehmann
+ PDF Chat Dynamics of nearly parallel vortex filaments for the Gross–Pitaevskii equation 2021 Robert L. Jerrard
Didier Smets
+ Dynamical Triangulation Models with Matter:¶High Temperature Region 2002 V. A. Malyshev
+ PDF Chat Collision of Almost Parallel Vortex Filaments 2016 Valeria Banica
Erwan Faou
Évelyne Miot
+ Transport in polygonal billiard systems 2009 Matthew Lee Reames
+ PDF Chat Vortex Polygons and Their Stabilities in Bose-Einstein Condensates and Field Theory 2013 Michikazu Kobayashi
Muneto Nitta
+ PDF Chat Multicanonical simulation of 3D dynamical triangulation model and a new phase structure 1998 T. Hotta
Taku Izubuchi
Jun Nishimura
+ Symbolic dynamics of planar piecewise smooth vector fields 2024 Tiago Carvalho
André do Amaral Antunes
+ Poisson Summation on Planar Regular Regions 2011