RANDOM MATRICES: UNIVERSAL PROPERTIES OF EIGENVECTORS

Type: Article

Publication Date: 2011-08-23

Citations: 87

DOI: https://doi.org/10.1142/s2010326311500018

Abstract

The four moment theorem asserts, roughly speaking, that the joint distribution of a small number of eigenvalues of a Wigner random matrix (when measured at the scale of the mean eigenvalue spacing) depends only on the first four moments of the entries of the matrix. In this paper, we extend the four moment theorem to also cover the coefficients of the eigenvectors of a Wigner random matrix. A similar result (with different hypotheses) has been proved recently by Knowles and Yin, using a different method. As an application, we prove some central limit theorems for these eigenvectors. In another application, we prove a universality result for the resolvent, up to the real axis. This implies universality of the inverse matrix.

Locations

  • Random Matrices Theory and Application - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Random Matrices Theory and Application - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Random matrices: Universal properties of eigenvectors 2011 Terence Tao
Van Vu
+ Random matrices: Universality of eigenvectors 2011 Terence Tao
Van Vu
+ Random matrices: The Four Moment Theorem for Wigner ensembles 2011 Terence Tao
Van Vu
+ Random matrices: The universality phenomenon for Wigner ensembles 2014 Terence Tao
Van Vu
+ Random matrices: The Universality phenomenon for Wigner ensembles 2012 Terence Tao
Van Vu
+ Random covariance matrices: Universality of local statistics of eigenvalues 2012 Terence Tao
Van Vu
+ Random matrices: Universality of local eigenvalue statistics 2009 Terence Tao
Van Vu
+ PDF Random matrices: Universality of local eigenvalue statistics 2011 Terence Tao
Van H. Vu
+ Random matrices: Localization of the eigenvalues and the necessity of four moments 2010 Terence Tao
Van Vu
+ PDF Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge 2010 Terence Tao
Van Vu
+ PDF Universality and the circular law for sparse random matrices 2012 Philip Matchett Wood
+ Local laws of random matrices and their applications 2019 Fan Yang
+ Universality of some models of random matrices and random processes 2012 Alexey Naumov
+ Eigenvectors of Sample Covariance Matrices: Universality of global fluctuations 2013 Ali Bouferroum
+ Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices 1998
+ Wigner matrices 2015 GĂŠrard Ben Arous
Alice Guionnet
+ Random matrices: Universality of ESDs and the circular law 2008 Terence Tao
Van Vu
Manjunath Krishnapur
+ Universality for the largest eigenvalue of a class of sample covariance matrices 2013 Zhigang Bao
Guangming Pan
Zhou Wang
+ Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices 2011 Mariya Shcherbina
+ User-Friendly Tools for Random Matrices: An Introduction 2012 Joel A. Tropp