Machine learning for neuroimaging with scikit-learn

Type: Article

Publication Date: 2014-01-01

Citations: 1947

DOI: https://doi.org/10.3389/fninf.2014.00014

Abstract

Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

Locations

  • Frontiers in Neuroinformatics - View - PDF
  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ Machine Learning for Neuroimaging with Scikit-Learn 2014 Alexandre Abraham
Fabian Pedregosa
Michael Eickenberg
Philippe Gervais
Andreas MĆ¼ller
Jean Kossaifi
Alexandre Gramfort
Bertrand Thirion
Gaƫl Varoquaux
+ Statistical learning methods for neuroimaging data analysis with applications 2022 Hongtu Zhu
Tengfei Li
Bingxin Zhao
+ PDF Chat Statistical Learning Methods for Neuroimaging Data Analysis with Applications 2023 Hongtu Zhu
Tengfei Li
Bingxin Zhao
+ PDF Chat Julearn: an easy-to-use library for leakage-free evaluation and inspection of ML models 2024 Sami Hamdan
Shammi More
Leonard Sasse
Vera Komeyer
Kaustubh R. Patil
Federico Raimondo
+ DeepNeuro: an open-source deep learning toolbox for neuroimaging 2018 Andrew Beers
James M. Brown
Ken Chang
Katharina Hoebel
Elizabeth R. Gerstner
Bruce R. Rosen
Jayashree Kalpathyā€Cramer
+ DeepNeuro: an open-source deep learning toolbox for neuroimaging 2018 Andrew Beers
James M. Brown
Ken Chang
Katharina Hoebel
Elizabeth R. Gerstner
Bruce R. Rosen
Jayashree Kalpathy-Cramer
+ PDF Chat Classical Statistics and Statistical Learning in Imaging Neuroscience 2017 Danilo Bzdok
+ Julearn: an easy-to-use library for leakage-free evaluation and inspection of ML models 2023 Sami Hamdan
Shammi More
Leonard Sasse
Vera Komeyer
Kaustubh R. Patil
Federico Raimondo
+ PDF Chat Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics 2021 Andrew Cwiek
Sarah Rajtmajer
Brad Wyble
Vasant Honavar
Emily C. Grossner
Frank G. Hillary
+ Feeding the machine: challenges to reproducible predictive modeling in resting-state connectomics 2021 Andrew Cwiek
Sarah Rajtmajer
Brad Wyble
Vasant Honavar
Frank G. Hillary
+ Developing and deploying deep learning models in brain MRI: a review 2023 Kunal Aggarwal
Marina Manso Jimeno
Keerthi Sravan Ravi
Gilberto GonzƔlez
Sairam Geethanath
+ Classical Statistics and Statistical Learning in Imaging Neuroscience 2016 Danilo Bzdok
+ Classical Statistics and Statistical Learning in Imaging Neuroscience 2016 Danilo Bzdok
+ A Survey of Statistics in the Neurological Sciences with a Focus on Human Neuroimaging 2018 Brian Caffo
Yi Zhao
Ani Eloyan
Zeyi Wang
Amanda F. Mejia
Martin A. Lindquist
+ PDF Chat Deep learning for neuroimaging: a validation study 2014 Sergey M. Plis
Devon Hjelm
Ruslan Salakhutdinov
Elena A. Allen
H. Jeremy Bockholt
Jeffrey D. Long
Hans J. Johnson
Jane S. Paulsen
Jessica A. Turner
Vince D. Calhoun
+ PDF Chat Applications of interpretable deep learning in neuroimaging: a comprehensive review 2024 Lindsay Munroe
Mariana da Silva
Faezeh Heidari
Irina Grigorescu
Simon Dahan
Emma C. Robinson
Maria Deprez
Poā€Wah So
+ Scikit-learn: Machine Learning in Python 2012 FabiƔn Pedregosa
Gaƫl Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
+ PDF Chat Brain Predictability toolbox: a Python library for neuroimaging-based machine learning 2020 Sage Hahn
De Kang Yuan
Wesley K. Thompson
Max M. Owens
Nicholas Allgaier
Hugh Garavan
+ Brain Predictability toolbox: a Python library for neuroimaging based machine learning 2020 Sage Hahn
Dekang Yuan
Wesley K. Thompson
Max M. Owens
Nicholas Allgaier
Hugh Garavan
+ Brain Predictability toolbox: a Python library for neuroimaging based machine learning 2020 Sage Hahn
Dekang Yuan
Wesley K. Thompson
Max M. Owens
Nicholas Allgaier
Hugh Garavan

Works That Cite This (178)

Action Title Year Authors
+ PDF Chat Interpretable brain age prediction using linear latent variable models of functional connectivity 2020 Ricardo Pio Monti
Alex Gibberd
Sandipan Roy
Matthew A. Nunes
Romy Lorenz
Robert Leech
Takeshi OGAWA
Motoaki Kawanabe
Aapo HyvƤrinen
+ PDF Chat BIDSonym: a BIDS App for the pseudo-anonymization of neuroimaging datasets 2021 Peer Herholz
Rita M. Ludwig
Jeanā€Baptiste Poline
+ Causal Autoregressive Flows. 2020 Ilyes Khemakhem
Ricardo Pio Monti
Robert Leech
Aapo HyvƤrinen
+ Fine-grain atlases of functional modes for fMRI analysis 2020 Kamalaker Dadi
Gaƫl Varoquaux
Antonia Machlouzarides-Shalit
Krzysztof J. Gorgolewski
DemiƔn Wassermann
Bertrand Thirion
Arthur Mensch
+ PDF Chat Timing of White Matter Development Determines Cognitive Abilities at School Entry but Not in Late Adolescence 2016 Henrik Ullman
Torkel Klingberg
+ PDF Chat An fMRI Dataset on Social Reward Processing and Decision Making in Younger and Older Adults 2024 David V. Smith
Rita M. Ludwig
Jeffrey B. Dennison
Crystal Reeck
Dominic S. Fareri
+ PDF Chat Machine learning for neuroimaging with scikit-learn 2014 Alexandre Abraham
Fabian Pedregosa
Michael Eickenberg
Philippe Gervais
Andreas Mueller
Jean Kossaifi
Alexandre Gramfort
Bertrand Thirion
Gaƫl Varoquaux
+ PDF Chat Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines 2016 Gaƫl Varoquaux
Pradeep Reddy Raamana
Denis A. Engemann
AndrƩs Hoyos-Idrobo
Yannick Schwartz
Bertrand Thirion
+ <b>Ball</b>: An <i>R</i> Package for Detecting Distribution Difference and Association in Metric Spaces 2021 Jin Zhu
Wenliang Pan
Wei Xing Zheng
Xueqin Wang
+ PDF Chat Cortical haemodynamic responses predict individual ability to recognise vocal emotions with uninformative pitch cues but do not distinguish different emotions 2023 Ryssa Moffat
Deniz Başkent
Robert Luke
David McAlpine
Lindsey Van Yper