Type: Article
Publication Date: 2002-06-28
Citations: 683
DOI: https://doi.org/10.1103/physreve.65.066130
We study the large-scale topological and dynamical properties of real Internet maps at the autonomous system level, collected in a 3-yr time interval. We find that the connectivity structure of the Internet presents statistical distributions settled in a well-defined stationary state. The large-scale properties are characterized by a scale-free topology consistent with previous observations. Correlation functions and clustering coefficients exhibit a remarkable structure due to the underlying hierarchical organization of the Internet. The study of the Internet time evolution shows a growth dynamics with aging features typical of recently proposed growing network models. We compare the properties of growing network models with the present real Internet data analysis.