Benford’s law for coefficients of modular forms and partition functions

Type: Article

Publication Date: 2010-12-29

Citations: 17

DOI: https://doi.org/10.1090/s0002-9939-2010-10577-4

Abstract

Here we prove that Benford’s law holds for coefficients of an infinite class of modular forms. Expanding the work of Bringmann and Ono on exact formulas for harmonic Maass forms, we derive the necessary asymptotics. This implies that the unrestricted partition function $p(n)$, as well as other natural partition functions, satisfies Benford’s law.

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Benford's Law For Coefficients of Modular Forms and Partition Functions 2010 Theresa C. Anderson
Larry Rolen
Ruth Stoehr
+ Benford's Law For Coefficients of Modular Forms and Partition Functions 2010 Theresa Dirndorfer Anderson
Larry Rolen
Ruth Stoehr
+ Fourier coefficients of modular forms(Analytic Number Theory) 2006 Winfried Kohnen
+ Fourier coefficients of harmonic weak Maass forms and the partition function 2015 Riad Masri
+ BOMBIERI–VINOGRADOV THEOREMS FOR MODULAR FORMS AND APPLICATIONS 2019 Peng‐Jie Wong
+ The Distribution of Fourier Coefficients of Weak Maass Forms 2020 Wei‐Lun Tsai
+ Modular Forms and the Chebotarev Density Theorem 1988 M. Ram Murty
V. Kumar Murty
N. Saradha
+ Universal Fourier expansions of modular forms 1994 Loïc Merel
+ On the sum of the twisted Fourier coefficients of Maass forms by Möbius function 2022 K Venkatasubbareddy
Amrinder Kaur
Ayyadurai Sankaranarayanan
+ PDF Chat Coefficients of Harmonic Maass Forms 2011 Kathrin Bringmann
Ken Ono
+ Asymptotics for coefficients of modular-type functions 2017 Kathrin Bringmann
Amanda Folsom
Ken Ono
Larry Rolen
+ Kloosterman sums and Maass forms 2003 Roger C. Baker
+ PDF Chat Divisibility properties of the Fourier coefficients of (mock) modular functions and Ramanujan 2024 Soon-Yi Kang
+ Modular forms arising from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>Q</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> and Dysonʼs rank 2010 Maria Monks
Ken Ono
+ An explicit formula of the Koecher-Maass series associated with Hermitian modular forms belonging to the Maass space 2006 Yoshinori Mizuno
+ Hecke System of Harmonic Maass Functions and Its Applications to Genus 1 Modular Curves 2020 Daeyeol Jeon
Soon-Yi Kang
Chang Heon Kim
+ Estimates for the Fourier coefficients of Maass forms 2002 Henryk Iwaniec
+ PDF Chat On weak harmonic Maass - modular grids of even integral weights 2009 Pavel Guerzhoy
+ Faà di Bruno’s Formula and Modular Forms 2015 Djohra Meguedmi
Ahmed Sebbar
+ PDF Chat Unearthing the Visions of a Master: Harmonic Maass Forms and Number Theory 2008 Ken Ono