DUAL PRESENTATION AND LINEAR BASIS OF THE TEMPERLEY-LIEB ALGEBRAS

Type: Article

Publication Date: 2010-05-01

Citations: 6

DOI: https://doi.org/10.4134/jkms.2010.47.3.445

Abstract

The braid group <TEX>$B_n$</TEX> maps homomorphically into the Temperley-Lieb algebra <TEX>$TL_n$</TEX>. It was shown by Zinno that the homomorphic images of simple elements arising from the dual presentation of the braid group <TEX>$B_n$</TEX> form a basis for the vector space underlying the Temperley-Lieb algebra <TEX>$TL_n$</TEX>. In this paper, we establish that there is a dual presentation of Temperley-Lieb algebras that corresponds to the dual presentation of braid groups, and then give a simple geometric proof for Zinno's theorem, using the interpretation of simple elements as non-crossing partitions.

Locations

  • Journal of the Korean Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Dual presentation and linear basis of the Temperley-Lieb algebras 2004 Eon-Kyung Lee
Sangjin Lee
+ Dual presentation and linear basis of the Temperley-Lieb algebras 2004 Eon-Kyung Lee
Sangjin Lee
+ PDF Chat Algèbre de Temperley–Lieb de type B 2006 Claire Vincenti
+ Representations of the Temperley-Lieb Algebra 2010 C. E. I. Redelmeier
+ Noncrossing partitions, fully commutative elements and bases of the Temperley-Lieb algebra 2014 Thomas Gobet
+ Noncrossing partitions, fully commutative elements and bases of the Temperley-Lieb algebra 2014 Thomas Gobet
+ PDF Chat Noncrossing partitions, fully commutative elements and bases of the Temperley–Lieb algebra 2016 Thomas Gobet
+ Representations of the Temperley-Lieb Algebra via a New Inner Product on Half-Diagrams 2010 C. E. I. Redelmeier
+ Diagrammatic Representations of Finitely-Generated Generalized Temperley-Lieb Algebras 2019 Sarafina Ford
+ Fusion and braiding in finite and affine Temperley-Lieb categories 2016 Azat M. Gainutdinov
Hubert Saleur
+ Monoïde dual, antichaînes de racines et algèbres de Temperley-Lieb 2007 Claire Vincenti
+ Presentation of the Motzkin Monoid 2013 Eliezer Posner
Kris Hatch
Megan Ly
+ Presentation of the Motzkin Monoid 2013 Eliezer Posner
Kris Hatch
Megan Ly
+ Dual bases in Temperley-Lieb algebras 2019 Michael Brannan
Benoı̂t Collins
+ Diagrammatic representations of Generalized Temperley-Lieb algebras of affine type $\widetilde{B}$ and $\widetilde{D}$ 2022 Riccardo Biagioli
Giuliana Fatabbi
Elisa Sasso
+ An orthogonal realization of representations of the Temperley-Lieb algebra 2023 Stephen Doty
Anthony Giaquinto
+ A TEMPERLEY-LIEB BASIS COMING FROM THE BRAID GROUP 2002 Matthew G. Zinno
+ The pop-switch planar algebra and the Jones-Wenzl idempotents 2015 Ellie Grano
Stephen Bigelow
+ The pop-switch planar algebra and the Jones-Wenzl idempotents 2015 Ellie Grano
Stephen Bigelow
+ Algorithm for computing Representations of the Braid Group and Temperley-Lieb algebra 2021 Yitzchak Shmalo