Type: Article
Publication Date: 2015-09-30
Citations: 39
DOI: https://doi.org/10.1017/s0305004115000468
Given a set $\Gamma$ of low-degree k-dimensional varieties in $\mathbb{R}^n$, we prove that for any $D \ge 1$, there is a non-zero polynomial $P$ of degree at most $D$ so that each component of $\mathbb{R}^n \setminus Z(P)$ intersects $O(D^{k-n} |\Gamma|)$ varieties of $\Gamma$.