On the Lebesgue function of weighted Lagrange interpolation. II

Type: Article

Publication Date: 1998-10-01

Citations: 26

DOI: https://doi.org/10.1017/s1446788700034923

Abstract

Abstract The aim of this paper is to continue our investigation of the Lebesgue function of weighted Lagrange interpolation by considering Erdős weights on ℝ and weights on [−1, 1]. The main results give lower bounds for the Lebesgue function on large subsets of the relevant domains.

Locations

  • Journal of the Australian Mathematical Society Series A Pure Mathematics and Statistics - View - PDF

Similar Works

Action Title Year Authors
+ On the Lebesgue Function of Weighted Lagrange Interpolation. I. (Freud-Type Weights) 1999 P. Vértesi
+ Mean convergence of Lagrange interpolation for Erdős weights 1993 D. S. Lubinsky
Thandwa Mthembu
+ PDF Chat On the Lebesgue Function of Interpolation 1981 Pál Erdös
P. Vértesi
+ Some Erdös-type Convergence Processes in Weighted Interpolation 2002 L. Szili
P. Vértesi
+ The Lebesgue Function and Lebesgue Constant of Lagrange Interpolation for Erdoős Weights 1998 Steven B. Damelin
+ PDF Chat Mean and uniform convergence of Lagrange interpolation with the Erdős-type weights 2012 Hee Sun Jung
Ryozi Sakai
+ On the role of the Lebesgue functions in the theory of the Lagrange interpolation 1955 Péter L. Erdős
P. Túrán
+ PDF Chat Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Erdős Weights II 1996 Steven B. Damelin
D. S. Lubinsky
+ PDF Chat Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Erdős Weights 1996 Steven B. Damelin
D. S. Lubinsky
+ Some Erdös-Feldheim type theorems on mean convergence of Lagrange interpolation 1983 A. K. Varma
P. Vértesi
+ Convergence of Lagrange Interpolation for Freud Weights in Weighted L p (ℝ), 0 <P ≤ 1 1994 D.M. Matjila
+ Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights 2004 Steven B. Damelin
H.S. Jung
+ Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights 2004 Steven B. Damelin
+ Lebesgue functions corresponding to a family of Lagrange interpolation polynomials 2013 I. A. Shakirov
+ PDF Chat Mean Convergence of Entire Interpolations in Weighted Space 2021 Felipe Gonçalves
Friedrich Littmann
+ New estimation for the Lebesgue function of Lagrange interpolation 1982 P. Vértesi
+ On Weighted L p -Convergence of Certain Lagrange Interpolation 1992 Min Guohua
+ Necessary conditions for weighted mean convergence of Lagrange interpolation for exponential weights 2001 Steven B. Damelin
H.S. Jung
K.H. Kwon
+ Lagrange interpolation with exponential weights on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> 2012 G. Mastroianni
Incoronata Notarangelo
+ A complete description of the Lebesgue functions for classical lagrange interpolation polynomials 2011 I. A. Shakirov