Universal quantum information compression and degrees of prior knowledge

Type: Article

Publication Date: 2003-11-25

Citations: 26

DOI: https://doi.org/10.1098/rspa.2003.1162

Abstract

We describe a universal information–compression scheme that compresses any pure quantum independent identically distributed (i.i.d.) source asymptotically to its von Neumann entropy, with no prior knowledge of the structure of the source. We introduce a diagonalization procedure that enables any classical compression algorithm to be used in a quantum context. Our scheme is then based on the corresponding quantum translation of the classical Lempel–Ziv algorithm. Our methods lead to a conceptually simple way of estimating the entropy of a source in terms of the measurement of an associated length parameter while maintaining high fidelity for long blocks. As a byproduct we also estimate the eigenbasis of the source. Since our scheme is based on the Lempel–Ziv method, it can potentially be applied also to non–i.i.d. sources that satisfy some further regularity conditions.

Locations

  • Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Universal quantum information compression and degrees of prior knowledge 2002 Richard Jozsa
Stuart Presnell
+ PDF Chat Entanglement-Assisted Quantum Data Compression 2019 Zahra Baghali Khanian
Andreas Winter
+ PDF Chat A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks 2013 Marco Tomamichel
Masahito Hayashi
+ PDF Chat Universal Quantum Information Compression 1998 Richard Jozsa
Michał Horodecki
Paweł Horodecki
Ryszard Horodecki
+ Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy 2017 Guido Bellomo
G. M. Bosyk
Federico Holik
Steeve Zozor
+ PDF Chat Trading quantum for classical resources in quantum data compression 2002 Patrick Hayden
Richard Jozsa
Andreas Winter
+ PDF Chat The Data Compression Theorem for Ergodic Quantum Information Sources 2005 Igor Bjelaković
Arleta Szkoła
+ PDF Chat General Mixed-State Quantum Data Compression With and Without Entanglement Assistance 2022 Zahra Baghali Khanian
Andreas Winter
+ Preprocessing operations and the reverse compression 2021 Matheus Capela
Fabio Costa
+ Preprocessing operations and the reverse compression 2021 Matheus Capela
Fábio Wildson Gurgel Costa
+ PDF Chat Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy 2017 Guido Bellomo
G. M. Bosyk
Federico Holik
Steeve Zozor
+ Quantum Shannon Theory 2016 John Preskill
+ PDF Chat Quantum entropy-typical subspace and universal data compression 2014 Jingliang Gao
Yanbo Yang
+ From Quantum Source Compression to Quantum Thermodynamics 2020 Zahra Baghali Khanian
+ Lossless Quantum Compression 2005 Caroline Rogers
Rajagopal Nagarajan
+ PDF Chat Schmidt quantum compressor 2024 Israel F. Araujo
Hyeondo Oh
Nayeli A. Rodríguez-Briones
Daniel K. Park
+ PDF Chat Quantum Compression Relative to a Set of Measurements 2018 Andreas Blühm
Lukas Rauber
Michael M. Wolf
+ Rate Reduction of Blind Quantum Data Compression with Local Approximations Based on Unstable Structure of Quantum States 2022 Kohdai Kuroiwa
Debbie Leung
+ Lossless quantum data compression and variable-length coding 2001 Kim J. Bostroem
Timo Felbinger
+ PDF Chat Lossless quantum data compression and variable-length coding 2002 Kim J. Bostroem
Timo Felbinger