Simulated annealing in convex bodies and an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> volume algorithm

Type: Article

Publication Date: 2005-11-10

Citations: 267

DOI: https://doi.org/10.1016/j.jcss.2005.08.004

Locations

  • Journal of Computer and System Sciences - View

Similar Works

Action Title Year Authors
+ Simulated annealing in convex bodies and an O*(n/sup 4/) volume algorithm 2004 L. Lovasz
S. Vempala
+ Quantum algorithm for estimating volumes of convex bodies 2019 Shouvanik Chakrabarti
Andrew M. Childs
Shih-Han Hung
Tongyang Li
Chunhao Wang
Xiaodi Wu
+ PDF Chat Quantum Algorithm for Estimating Volumes of Convex Bodies 2023 Shouvanik Chakrabarti
Andrew M. Childs
Shih-Han Hung
Tongyang Li
Chunhao Wang
Xiaodi Wu
+ PDF Chat Practical Volume Estimation of Zonotopes by a New Annealing Schedule for Cooling Convex Bodies 2020 Apostolos Chalkis
Ioannis Z. Emiris
Vissarion Fisikopoulos
+ Practical Volume Estimation by a New Annealing Schedule for Cooling Convex Bodies. 2019 Apostolos Chalkis
Ioannis Z. Emiris
Vissarion Fisikopoulos
+ A practical algorithm for volume estimation based on billiard trajectories and simulated annealing 2019 Apostolos Chalkis
Ioannis Z. Emiris
Vissarion Fisikopoulos
+ PDF Chat A Practical Algorithm for Volume Estimation based on Billiard Trajectories and Simulated Annealing 2023 Apostolos Chalkis
Ioannis Z. Emiris
Vissarion Fisikopoulos
+ Volume of a convex body 2003 Mark Jerrum
+ Random walks in a convex body and an improved volume algorithm 1993 László Lovász
Miklós Simonovits
+ Optimization Algorithms for Computational Geometry 2014 Zeyuan Allen-Zhu
Zhenyu Liao
Lorenzo Orecchia
Yang Yuan
+ Volumes in High Dimension 2002 Jiřı́ Matoušek
+ A random polynomial time algorithm for approximating the volume of convex bodies 1989 Martin Dyer
Alan Frieze
+ Overlap of Convex Polytopes under Rigid Motion 2012 Hee-Kap Ahn
Siu-Wing Cheng
Hyuk Jun Kweon
Juyoung Yon
+ Simulated Annealing for Convex Optimization 2006 Adam Tauman Kalai
Santosh Vempala
+ Random Approximation of Convex Bodies: Monotonicity of the Volumes of Random Tetrahedra 2017 Stefan Kunis
Benjamin Reichenwallner
Matthias Reitzner
+ Sampling convex bodies: a random matrix approach 2006 Guillaume Aubrun
+ Bypassing KLS: Gaussian Cooling and an O*(n^3) Volume Algorithm 2014 Ben Cousins
Santosh Vempala
+ Reducing Isotropy and Volume to KLS: An $O(n^3ψ^2)$ Volume Algorithm 2020 Jia He
Aditi Laddha
Yin Tat Lee
Santosh Vempala
+ Computing the volume of convex bodies: a case where randomness provably helps 1991 Martin Dyer
Alan Frieze
+ Estimating the volume of a convex body 2018 Nicolai Baldin