Coherent Bayesian analysis of inspiral signals

Type: Article

Publication Date: 2007-09-19

Citations: 23

DOI: https://doi.org/10.1088/0264-9381/24/19/s23

Abstract

In this paper we present a Bayesian parameter estimation method for the analysis of interferometric gravitational wave observations of an inspiral of binary compact objects using data recorded simultaneously by a network of several interferometers at different sites. We consider neutron star or black hole inspirals that are modeled to 3.5 post-Newtonian (PN) order in phase and 2.5 PN in amplitude. Inference is facilitated using Markov chain Monte Carlo (MCMC) methods that are adapted in order to efficiently explore the particular parameter space. Examples are shown to illustrate how and what information about the different parameters can be derived from the data. This study uses simulated signals and data with noise characteristics that are assumed to be defined by the LIGO and Virgo detectors operating at their design sensitivities. Nine parameters are estimated, including those associated with the binary system plus its location on the sky. We explain how this technique will be part of a detection pipeline for binary systems of compact objects with masses up to , including cases where the ratio of the individual masses can be extreme.

Locations

  • Classical and Quantum Gravity - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors 2007 Christian Röver
Renate Meyer
N. Christensen
+ Bayesian inference on astrophysical binary inspirals based on gravitational-wave measurements 2007 Christian Röver
+ PDF Chat Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data 2006 Christian Röver
Renate Meyer
N. Christensen
+ PDF Chat Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries 2008 Marc van der Sluys
Christian Röver
A. Stroeer
V. Raymond
Ilya Mandel
N. Christensen
V. Kalogera
Renate Meyer
A. Vecchio
+ PDF Chat Parameter estimation for signals from compact binary inspirals injected into LIGO data 2009 Marc van der Sluys
Ilya Mandel
V. Raymond
Vicky Kalogera
Christian Röver
N. Christensen
+ PDF Chat Robust and fast parameter estimation for gravitational waves from binary neutron star merger remnants 2025 Stamatis Vretinaris
Georgios Vretinaris
Christos Mermigkas
Minas Karamanis
Nikolaos Stergioulas
+ PDF Chat Inferring Binary Properties from Gravitational-Wave Signals 2024 Javier Roulet
Tejaswi Venumadhav
+ PDF Chat Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo 2008 Marc van der Sluys
V. Raymond
Ilya Mandel
Christian Röver
N. Christensen
Vicky Kalogera
Renate Meyer
A. Vecchio
+ PDF Chat Degeneracies in sky localization determination from a spinning coalescing binary through gravitational wave observations: a Markov-chain Monte Carlo analysis for two detectors 2009 V. Raymond
Marc van der Sluys
Ilya Mandel
V. Kalogera
Christian Röver
N. Christensen
+ PDF Chat Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library 2015 J. Veitch
V. Raymond
B. Farr
Will M. Farr
P. B. Graff
S. Vitale
B. E. Aylott
K. Blackburn
N. Christensen
M. W. Coughlin
+ PDF Chat COHERENT VERSUS COINCIDENCE DETECTION OF GRAVITATIONAL WAVE SIGNALS FROM COMPACT INSPIRALING BINARIES 2011 S. Dhurandhar
H. Mukhopadhyay
Hideyuki Tagoshi
Nobuyuki Kanda
+ Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries 2007 Marc van der Sluys
Christian Roever
A. Stroeer
V. Raymond
Ilya Mandel
N. Christensen
V. Kalogera
Renate Meyer
A. Vecchio
+ PDF Chat Pre-Merger Detection and Characterization of Inspiraling Binary Neutron Stars Derived from Neural Posterior Estimation 2024 Wouter van Straalen
Alex Kolmus
Justin Janquart
Chris Van Den Broeck
+ PDF Chat Computational techniques for parameter estimation of gravitational wave signals 2020 Renate Meyer
M. C. Edwards
Patricio Maturana‐Russel
N. Christensen
+ PDF Chat Bayesian comparison of post-Newtonian approximations of gravitational wave chirp signals 2008 Richard Umstätter
Massimo Tinto
+ PDF Chat Bayesian approach to the follow-up of candidate gravitational wave signals 2008 J. Veitch
A. Vecchio
+ PDF Chat Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy 2019 G. Ashton
M. T. Hübner
P. D. Lasky
C. Talbot
K. Ackley
S. Biscoveanu
Qi Chu
Atul K. Divakarla
P. J. Easter
B. Goncharov
+ PDF Chat Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection 2008 J. Veitch
A. Vecchio
+ PDF Chat Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era 2012 S. Vitale
W. Del Pozzo
Tjonnie G. F. Li
Chris Van Den Broeck
Ilya Mandel
B. E. Aylott
J. Veitch
+ PDF Chat Bayesian inference of multimessenger astrophysical data: Methods and applications to gravitational waves 2021 M. Breschi
Rossella Gamba
Sebastiano Bernuzzi

Works That Cite This (21)

Action Title Year Authors
+ PDF Chat Optimal follow-up observations of gravitational wave events with small optical telescopes 2017 Tatsuya Narikawa
Masato Kaneyama
Hideyuki Tagoshi
+ Predicting electromagnetic counterparts using low-latency gravitational-wave data products 2021 C. Stachie
M. W. Coughlin
Tim Dietrich
S. Antier
Mattia Bulla
N. Christensen
R. C. Essick
Philippe Landry
B. Mours
Federico Schianchi
+ PDF Chat Mock data challenge for the Einstein Gravitational-Wave Telescope 2012 T. Regimbau
T. Dent
W. Del Pozzo
S. Giampanis
Tjonnie G. F. Li
Craig Robinson
Chris Van Den Broeck
Duncan Meacher
Carl L. Rodriguez
B. S. Sathyaprakash
+ PDF Chat Bayesian approach to the follow-up of candidate gravitational wave signals 2008 J. Veitch
A. Vecchio
+ PDF Chat Using machine learning for transient classification in searches for gravitational-wave counterparts 2020 C. Stachie
M. W. Coughlin
N. Christensen
Daniel Muthukrishna
+ PDF Chat Bayesian comparison of post-Newtonian approximations of gravitational wave chirp signals 2008 Richard Umstätter
Massimo Tinto
+ The Bernstein-von Mises theorem for non-regular generalised linear inverse problems 2013 Natalia Bochkina
Peter J. Green
+ PDF Chat Bayesian reconstruction of gravitational wave burst signals from simulations of rotating stellar core collapse and bounce 2009 Christian Röver
M. A. Bizouard
N. Christensen
Harald Dimmelmeier
I. S. Heng
Renate Meyer
+ PDF Chat Consistency of the posterior distribution in generalized linear inverse problems 2013 Natalia Bochkina
+ PDF Chat Precession during merger: Strong polarization changes are observationally accessible features of strong-field gravity during binary black hole merger 2013 R. O’Shaughnessy
L. T. London
J. Healy
D. H. Shoemaker