Rough solutions for the wave maps equation

Type: Article

Publication Date: 2005-04-01

Citations: 125

DOI: https://doi.org/10.1353/ajm.2005.0014

Abstract

We consider the wave maps equation with values into a Riemannian manifold which is isometrically embedded in [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="01i" /]. Our main result asserts that the Cauchy problem is globally well-posed for initial data which is small in the critical Sobolev spaces. This extends and completes recent work of Tao and other authors.

Locations

  • American Journal of Mathematics - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Local and global well-posedness of wave maps on $\R^{1+1}$ for rough data 1998 Marcus Keel
Terence Tao
+ The Cauchy Problem for Wave Maps on a Curved Background 2011 Andrew Lawrie
+ The Cauchy Problem for Wave Maps on a Curved Background 2011 Andrew Lawrie
+ Wave Maps and Ill-posedness of their Cauchy Problem 2006 Piero DʼAncona
Vladimir Georgiev
+ Energy bounds for a fourth-order equation in low dimensions related to wave maps 2022 Tobias Schmid
+ Wave maps 1997 Michaël Struwe
+ None 2002 Jalal Shatah
Michaël Struwe
+ Rough solution for the Einstein Vacuum equations 2001 Sergiù Klainerman
Igor Rodnianski
+ PDF Chat A note on ill-posedness of the Cauchy problem for Heisenberg wave maps 2008 Luca Capogna
Jalal Shatah
+ PDF Chat Rough solutions of the Einstein-vacuum equations 2005 Sergiù Klainerman
Igor Rodnianski
+ PDF Chat Low regularity solutions for the wave map equation into the 2-D sphere 2004 Piero DʼAncona
Vladimir Georgiev
+ On the well-posedness of the wave map problem in high dimensions 2001 Andrea R. Nahmod
Atanas Stefanov
Karen Uhlenbeck
+ PDF Chat On the well-posedness of the wave map problem in high dimensions 2003 Andrea R. Nahmod
Atanas Stefanov
Karen Uhlenbeck
+ The wave map problem. Small data critical regularity 2006 Igor Rodnianski
+ Energy bounds for biharmonic wave maps in low dimensions 2018 Tobias Schmid
+ On Lipschitz continuity of the solution map for two-dimensional wave maps 2003 Piero DʼAncona
Vladimir Georgiev
+ Long time solutions for wave maps with large data 2012 Jinhua Wang
Pin Yu
+ PDF Chat Wave maps on (1+2)-dimensional curved spacetimes 2021 Cristian Gavrus
Casey Jao
Daniel Tataru
+ The wave maps equation and Brownian paths 2021 Bjoern Bringmann
Jonas Lührmann
Gigliola Staffilani
+ PDF Chat The wave maps equation and Brownian paths 2021 Bjoern Bringmann
Jonas Lührmann
Gigliola Staffilani