On the parabolic Lipschitz approximation of parabolic uniform rectifiable sets

Type: Article

Publication Date: 2017-11-17

Citations: 8

DOI: https://doi.org/10.4171/rmi/976

Abstract

We prove the existence of big pieces of regular parabolic Lipschitz graphs for a class of parabolic uniform rectifiable sets satisfying what we call a synchronized two cube condition. An application to the fine properties of parabolic measure is given.

Locations

  • Revista Matemática Iberoamericana - View
  • KTH Publication Database DiVA (KTH Royal Institute of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On big pieces approximations of parabolic hypersurfaces 2022 Simon Bortz
John W. Hoffman
Steve Hofmann
José Luis Luna-Garcia
Kaj Nyström
+ On Big Pieces approximations of parabolic hypersurfaces 2021 Simon Bortz
John P. Hoffman
Steve Hofmann
José Luis Luna-Garcia
Kaj Nyström
+ Parabolic quantitative rectifiability 2023 John L. Hoffman
+ Two results over sets with big pieces of parabolic Lipschitz graphs 2010 Jorge Rivera-Noriega
+ PDF Chat Coronizations and big pieces in metric spaces 2022 Simon Bortz
John W. Hoffman
Steve Hofmann
Jose Luis Luna-Garcia
Kaj Nyström
+ Coronizations and big pieces in metric spaces 2020 Simon Bortz
John P. Hoffman
Steve Hofmann
José Luis Luna García
Kaj Nyström
+ PDF Chat Corona Decompositions for Parabolic Uniformly Rectifiable Sets 2023 Simon Bortz
J. William Hoffman
Steve Hofmann
José Luis Luna-Garcia
Kaj Nyström
+ Corona Decompositions for Parabolic Uniformly Rectifiable Sets 2021 Simon Bortz
John P. Hoffman
Steve Hofmann
José Luis Luna García
Kaj Nyström
+ Parabolic rectifiability, tangent planes and tangent measures 2021 Pertti Mattila
+ PDF Chat Carleson measure estimates for caloric functions and parabolic uniformly rectifiable sets 2023 Simon Bortz
John W. Hoffman
Steve Hofmann
José Luis Luna García
Kaj Nyström
+ PDF Chat Parabolic rectifiability, tangent planes and tangent measures 2022 Pertti Mattila
+ Carleson measure estimates for caloric functions and parabolic uniformly rectifiable sets 2021 Simon Bortz
John P. Hoffman
Steve Hofmann
José Luis Luna García
Kaj Nyström
+ On the density problem in the parabolic space 2022 Andrea Merlo
Mihalis Mourgoglou
Carmelo Puliatti
+ Intrinsic graphs and big pieces of parabolic Lipschitz images 2019 Tuomas Orponen
+ Parabolic Singular Integrals and Uniformly Rectifiable Sets in the Parabolic Sense 2011 Jorge Rivera-Noriega
+ Parabolic Singular Integrals on Ahlfors Regular Sets 2014 Jorge Rivera-Noriega
+ EXISTENCE OF BIG PIECES OF GRAPHS FOR PARABOLIC PROBLEMS 2003 Steve Hofmann
John L. Lewis
Kaj Nyström
+ Harmonic measure and approximation of uniformly rectifiable sets 2015 Simon Bortz
Steve Hofmann
+ Harmonic measure and approximation of uniformly rectifiable sets 2015 Simon Bortz
Steve Hofmann
+ PDF Chat Harmonic measure and approximation of uniformly rectifiable sets 2017 Simon Bortz
Steve Hofmann