A Cantor set of tori with monodromy near a focus–focus singularity

Type: Article

Publication Date: 2003-11-10

Citations: 26

DOI: https://doi.org/10.1088/0951-7715/17/1/019

Abstract

We write down an asymptotic expression for action coordinates in an integrable Hamiltonian system with a focus–focus equilibrium. From the singularity in the actions we deduce that the Arnol'd determinant grows infinitely large near the pinched torus. Moreover, we prove that it is possible to globally parameterize the Liouville tori by their frequencies. If one perturbs this integrable system, then the KAM tori form a Whitney smooth family: they can be smoothly interpolated by a torus bundle that is diffeomorphic to the bundle of Liouville tori of the unperturbed integrable system. As is well known, this bundle of Liouville tori is not trivial. Our result implies that the KAM tori have monodromy. In semi-classical quantum mechanics, quantization rules select sequences of KAM tori that correspond to quantum levels. Hence a global labelling of quantum levels by two quantum numbers is not possible.

Locations

  • Nonlinearity - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Vanishing twist near focus–focus points 2004 Holger R. Dullin
Vũ Ngoc San
+ PDF Chat A note on focus-focus singularities 1997 Nguyen Tien Zung
+ A note on focus-focus singularities 2001 Nguyen Tien Zung
+ Vanishing Twist near Focus-Focus Points 2003 Holger R. Dullin
Vũ Ngoc San
+ PDF Chat Smooth normal forms for integrable Hamiltonian systems near a focus–focus singularity 2013 San Vũ Ngọc
Christophe Wacheux
+ Smooth normal forms for integrable hamiltonian systems near a focus-focus singularity 2011 San Vũ Ngọc
Christophe Wacheux
+ Smooth normal forms for integrable hamiltonian systems near a focus-focus singularity 2011 San Vũ Ngọc
Christophe Wacheux
+ Asymptotics of action variables near semi-toric singularities 2015 Christophe Wacheux
+ Bohr-Sommerfeld conditions for Integrable Systems with critical manifolds of focus-focus type 1998 Vũ Ngoc San
+ PDF Chat Focus-focus singularities in classical mechanics 2014 Gleb Smirnov
+ Monodromy of a two degrees of freedom Liouville integrable system with many focus focus singular points 2002 Richard Cushman
B.I. Zĥilinskiı́
+ PDF Chat Monodromy in Dicke superradiance 2017 Michal Kloc
Pavel Stránský
Pavel Cejnar
+ Geometric scattering monodromy 2022 Richard Cushman
+ Recent advances in the monodromy theory of integrable Hamiltonian systems 2020 Nikolay Martynchuk
Henk Broer
Konstantinos Efstathiou
+ Recent advances in the monodromy theory of integrable Hamiltonian systems 2020 Nikolay Martynchuk
Henk Broer
Konstantinos Efstathiou
+ Kolmogorov condition for integrable systems with focus-focus singularities 1996 Nguyen Tien Zung
+ PDF Chat Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type 2000 San Vũ Ngọc
+ PDF Chat Semiclassical Inverse Spectral Theory for Singularities of Focus–Focus Type 2014 Álvaro Pelayo
San Vũ Ngọc
+ Another note on focus-focus singularities 2001 Nguyen Tien Zung
+ Quasi-analytic properties of the KAM curve 2019 Frank Trujillo

Works That Cite This (15)

Action Title Year Authors
+ PDF Chat Kolmogorov condition near hyperbolic singularities of integrable Hamiltonian systems 2007 Nguyen Tien Zung
+ Hamiltonian Perturbation Theory (and Transition to Chaos) 2011 Henk Broer
Heinz Hanßmann
+ PDF Chat Fractional Hamiltonian Monodromy 2006 Nikolaií N. Nekhoroshev
D. A. Sadovskiı́
B.I. Zĥilinskiı́
+ Bifurcations and monodromy of the axially symmetric <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e4217" altimg="si101.svg"><mml:mrow><mml:mn>1</mml:mn><mml:mo>:</mml:mo><mml:mn>1</mml:mn><mml:mo>:</mml:mo><mml:mo linebreak="goodbreak" linebreakstyle="after">−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math> resonance 2019 Konstantinos Efstathiou
Heinz Hanßmann
Antonella Marchesiello
+ PDF Chat Nearly-integrable perturbations of the Lagrange top: applications of KAM-theory 2006 Henk Broer
Heinz Hanßmann
J. Hoo
V. Naudot
+ A Universal Procedure for Normalizing<i>n</i>-Degree-of-Freedom Polynomial Hamiltonian Systems 2005 Susana Gutiérrez-Romero
Jesús F. Palacián
Patricia Yanguas
+ Kolmogorov condition near hyperbolic singularities of integrable Hamiltonian systems 2007 Nguyen Tien Zung
+ KAM Theory: Quasi-periodicity in Dynamical Systems 2010 Henk Broer
Mikhail B. Sevryuk
+ Recent advances in the monodromy theory of integrable Hamiltonian systems 2020 Nikolay Martynchuk
Henk Broer
Konstantinos Efstathiou
+ PDF Chat Hamiltonian Monodromy and Morse Theory 2019 Nikolay Martynchuk
Henk Broer
Konstantinos Efstathiou