On biorthogonal and orthonormal Clebsch–Gordan coefficients of SU(3): Analytical and algebraic approaches

Type: Article

Publication Date: 1988-11-01

Citations: 22

DOI: https://doi.org/10.1063/1.528119

Locations

  • Journal of Mathematical Physics - View

Similar Works

Action Title Year Authors
+ Explicit orthonormal Clebsch–Gordan coefficients of SU(3) 1990 Sigitas Ališauskas
+ Overlaps of the biorthogonal (3) coupling coefficients and related basic hypergeometric and other<b><i>q</i></b>-factorial series 1997 Sigitas Ališauskas
+ On the projected bases for Sp(4)⊇U(2) and the orthogonalization problem 1994 Sigitas Ališauskas
W. Berej
+ Explicit canonical tensor operators and orthonormal coupling coefficients of SU(3) 1992 Sigitas Ališauskas
+ Explicit orthogonalization of some biorthogonal bases for SU(<i>n</i>)⊇SO(<i>n</i>) and Sp(4)⊇U(2) 1992 Sigitas Ališauskas
+ From canonical tensor operators of SU(3) and (3) to bi-orthogonal coupling coefficients: explicit expansion 1998 Sigitas Ališauskas
J. P. Draayer
+ Clebsch-Gordan problem for three-dimensional Lorentz group in the elliptic basis: I. Tensor product of continuous series 1998 G A Kerimov
Y. A. Verdiyev
+ PDF Chat 9 j-Coefficients and Higher 2020 J. Van der Jeugt
+ PDF Chat On a general analytic formula for U q(su(3)) Clebsch-Gordan coefficients 2001 Р.М. Ашерова
Yu.F. Smirnov
V.N. Tolstoy
+ Biorthogonal coupling coefficients of u<sub>q</sub>(n) 1995 Sigitas Ališauskas
+ Multiplicity-free u<sub>q</sub>(n) coupling coefficients 1994 Sigitas Ališauskas
Yu.F. Smirnov
+ SU(3) Clebsch-Gordan coefficients and some of their symmetries 2019 Alex Clésio Nunes Martins
Mark W. Suffak
Hubert de Guise
+ SU(3) Clebsch-Gordan coefficients and some of their symmetries 2019 Alex Clésio Nunes Martins
Mark W. Suffak
Hubert de Guise
+ PDF Chat Complementary group resolution of the SU(n) outer multiplicity problem. II. Recoupling approach for SU(3)⊃U(2) reduced Wigner coefficients 1998 Feng Pan
J. P. Draayer
+ Hypergeometric orthogonal polynomials as expansion basis sets for atomic and molecular orbitals: The Jacobi ladder 2019 Cecilia Coletti
Vincenz̊o Aquilanti
Federico Palazzetti
+ PDF Chat <i>SU</i>(3) Clebsch–Gordan coefficients and some of their symmetries 2019 Alex Clésio Nunes Martins
Mark W. Suffak
Hubert de Guise
+ PDF Chat Towards the canonical tensor operators of <i>u</i> <i>q</i>(3). I. The maximal null space case 1996 Sigitas Ališauskas
+ The Gelfand-Tsetlin basis for infinite-dimensional representations of $gl_n(\mathbb{C})$ 2021 P. V. Antonenko
+ On the evaluation of the U(3) content of the matrix elements of one- and two-body operators 1992 V.V. Vanagas
Jean-Robert Alcaras
+ Orthogonalization of the projected states and isofactors 1996 Sigitas Ališauskas

Works Cited by This (29)

Action Title Year Authors
+ On the Evaluation of the Multiplicity-Free Wigner Coefficients of <i>U</i>(<i>n</i>) 1972 E. Chacón
Mikael Ciftan
L. C. Biedenharn
+ <i>Generalized Hypergeometric Functions</i> 1967 L. J. Slater
Werner C. Rheinboldt
+ Canonical Definition of Wigner Coefficients in <i>Un</i> 1967 L. C. Biedenharn
Alberto Giovannini
James D. Louck
+ PDF Chat On the structure of the canonical tensor operators in the unitary groups. II. The tensor operators in <i>U</i>(3) characterized by maximal null space 1972 L. C. Biedenharn
James D. Louck
+ Complete sets of commuting operators and <i>O</i> (3) scalars in the enveloping algebra of <i>SU</i> (3) 1974 B. R. Judd
Willard Miller
J. Patera
P. Winternitz
+ Structural properties of the canonical U(3) Racah functions and the U(3) : U(2) projective functions 1975 James D. Louck
M. A. Lohe
L. C. Biedenharn
+ A resolution of the SU(3) outer multiplicity problem and computation of Wigner coefficients for SU(3) 1986 R Le Blanc
D.J. Rowe
+ On the structure of the canonical tensor operators in the unitary groups. I. An extension of the pattern calculus rules and the canonical splitting in <i>U</i>(3) 1972 L. C. Biedenharn
James D. Louck
E. Chacón
Mikael Ciftan
+ Recursion Relations for the Wigner Coefficients of Unitary Groups 1965 Thomas A. Brody
M. Moshińsky
I. Renero
+ On the Representations of the Semisimple Lie Groups. IV. A Canonical Classification for Tensor Operators in <i>SU</i>3 1964 G. E. Baird
L. C. Biedenharn