On <i>p</i>-adic <i>L</i>-functions and elliptic units

Type: Article

Publication Date: 1978-08-01

Citations: 66

DOI: https://doi.org/10.1017/s1446788700011459

Abstract

Abstract The aim of the paper is to prove an elliptic analogue of a deep theorem of Iwasawa on cyclotomic fields. Subject classification ( Amer. Math. Soc. ( MOS ) 1970 ): primary 12 A 35, 12 A 65.

Locations

  • Journal of the Australian Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On <i>p</i>-adic <i>L</i>-functions and cyclotomic fields 1975 Ralph Greenberg
+ PDF Chat On<i>p</i>-adic<i>L</i>-functions and cyclotomic fields. II 1977 Ralph Greenberg
+ On <i>p</i>-adic <i>L</i>-series, <i>p</i>-adic cohomology and class field theory 2015 David Burns
Daniel Macias Castillo
+ ON<i>p</i>-ADIC ZETA-FUNCTIONS 1979 Yuri Osipov
+ <i>p</i> -adic <i>L</i> functions and trivial zeroes 1997 Bernadette Perrin-Riou
+ <i>p</i>-Adic <i>L</i>-functions and Zeta Element 2008 Daniel Delbourgo
+ p-adic Hecke <i>L</i>-functions 1993 Haruzo Hida
+ On even <i>K</i>-groups over <i>p</i>-adic Lie extensions of global function fields 2025 Meng Fai Lim
+ Linear forms in logarithms in the <i>p</i>-adic case 1988 Kunrui Yu
+ <i>p</i>-adic Hodge theory 2010 Kiran S. Kedlaya
+ On norm maps for one dimensional formal groups I : the cyclotomic $ \Gamma $ -extension 1974 Michiel Hazewinkel
+ On<i>p</i>-adic<i>L</i>-Functions for GL (<i>n</i>) × GL (<i>n</i>-1) Over Totally Real Fields 2014 Fabian Januszewski
+ <i>p</i>-adic families of modular forms 2021
+ Logarithm and Exponential in a <i>p</i>-adic Field 2025
+ Logarithm and Exponential in a <i>p</i>-adic Field 2025
+ Logarithm and exponential in a <i>p</i>-adic field 2015
+ Introduction to Cyclotomic Fields 1982 Lawrence C. Washington
+ Identity sequences for <i>p</i>-adic functions 2015
+ On the μ-invariant of anticyclotomic <i>p</i>-adic <i>L</i>-functions for CM fields 2012 Ming-Lun Hsieh
+ PDF Chat Selmer complexes and <i>p</i>-adic Hodge theory 2015 Denis Benois