The dynamical properties of Penrose tilings

Type: Article

Publication Date: 1996-01-01

Citations: 67

DOI: https://doi.org/10.1090/s0002-9947-96-01640-6

Abstract

The set of Penrose tilings, when provided with a natural compact metric topology, becomes a strictly ergodic dynamical system under the action of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R squared"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbf {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by translation. We show that this action is an almost 1:1 extension of a minimal <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R squared"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbf {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> action by rotations on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T Superscript 4"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbf {T}^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, i.e., it is an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R squared"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbf {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generalization of a <italic>Sturmian dynamical system</italic>. We also show that the inflation mapping is an almost 1:1 extension of a hyperbolic automorphism on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T Superscript 4"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbf {T}^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The local topological structure of the set of Penrose tilings is described, and some generalizations are discussed.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Topological ergodic theory and mean rotation 1993 Steve Alpern
V. Prasad
+ A Markov Partition For The Penrose Wang Shift 2023 Harper Hults
Hikaru Jitsukawa
Casey Mann
Zuopeng Zhang
+ Ergodic actions of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>μ</mml:mi></mml:mrow></mml:msub><mml:mi>U</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:… 2009 Claudia Pinzari
John E. Roberts
+ PDF Chat Recurrent homeomorphisms on 𝑅² are periodic 1990 Lex Oversteegen
E. D. Tymchatyn
+ PDF Chat Putting the Pieces Together: Understanding Robinson's Nonperiodic Tilings 1997 Aimee Johnson
Kathleen Madden
+ PDF Chat Automorphism Groups and Invariant Subspace Lattices 1997 Paul S. Muhly
Baruch Solel
+ PDF Chat Multiscale substitution tilings 2021 Yotam Smilansky
Yaar Solomon
+ Tilings, substitution systems and dynamical systems generated by them 1989 Shahar Mozes
+ PDF Chat Free 𝑆¹ actions and the group of diffeomorphisms 1974 Kai Wang
+ PDF Chat A dynamical proof of the multiplicative ergodic theorem 1993 Peter Walters
+ PDF Chat 𝑃𝐿 involutions of 𝑆¹×𝑆¹×𝑆¹ 1975 Kyung Whan Kwun
Jeffrey L. Tollefson
+ PDF Chat Geometrical Penrose Tilings have Finite Type 2022 Victor Lutfalla
Thomas Fernique
+ Remarks on Penrose Tilings 2013 N.G. de Bruijn
+ PDF Chat Pseudocircles in dynamical systems 1994 Judy Kennedy
James A. Yorke
+ Strongly ergodic actions have local spectral gap 2018 Amine Marrakchi
+ PDF Chat Fiber entropy and algorithmic complexity of random orbits 2022 Elias Zimmermann
+ PDF Chat On ergodic sequences of measures 1975 J. R. Blum
Robert Cogburn
+ PDF Chat Ergodic properties that lift to compact group extensions 1988 E. Arthur Robinson
+ PDF Chat Unstable 𝑣₁-periodic homotopy groups of a Moore space 1989 Robert D. Thompson
+ PDF Chat Ergodic group actions with nonunique invariant means 1987 Ching Chou