The Poincaré inequality is an open ended condition

Type: Article

Publication Date: 2008-03-01

Citations: 200

DOI: https://doi.org/10.4007/annals.2008.167.575

Abstract

Let p > 1 and let (X, d, μ) be a complete metric measure space with μ Borel and doubling that admits a (1, p)-Poincaré inequality.Then there exists ε > 0 such that (X, d, μ) admits a (1, q)-Poincaré inequality for every q > p-ε, quantitatively.

Locations

  • Annals of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Lebesgue points via the Poincaré inequality 2014 Nijjwal Karak
Pekka Koskela
+ PDF Chat Lebesgue points via the Poincaré inequality 2015 Nijjwal Karak
Pekka Koskela
+ Lebesgue points via the Poincar\'e inequality 2014 Nijjwal Karak
Pekka Koskela
+ Self-improvement of Poincaré inequalities 2015 Pekka Koskela
Nageswari Shanmugalingam
Jeremy T. Tyson
+ Geometric characterizations of p-Poincaré inequalities in the metric setting 2016 Estíbalitz Durand-Cartagena
Jesús Á. Jaramillo
Nageswari Shanmugalingam
+ PDF Chat A remark on Poincaré inequalities on metric measure spaces 2004 Stephen Keith
Kai Rajala
+ The ∞-Poincaré inequality on metric measure spaces 2012 Estíbalitz Durand-Cartagena
Jesús Á. Jaramillo
Nageswari Shanmugalingam
+ Uniform Poincaré inequalities on measured metric spaces 2020 Gautam Neelakantan Memana
Soma Maity
+ The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces 2017 Panu Lahti
+ PDF Chat Geometric characterizations of $p$-Poincaré inequalities in the metric setting 2015 Estíbalitz Durand-Cartagena
Jesús Á. Jaramillo
Nageswari Shanmugalingam
+ PDF Chat A non-doubling Trudinger inequality 2005 Амиран Гогатишвили
Pekka Koskela
+ The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces 2017 Panu Lahti
+ PDF Chat Geometric Implications of the Poincaré Inequality 2007 Riikka Korte
+ PDF Chat Metric currents and the Poincaré inequality 2019 Katrin Fässler
Tuomas Orponen
+ PDF Chat From dimension free concentration to Poincaré inequality 2015 Nathaël Gozlan
Cyril Roberto
Paul-Marie Samson
+ From dimension free concentration to Poincaré inequality 2013 Nathaël Gozlan
Cyril Roberto
Paul-Marie Samson
+ Poincaré-type Inequalities 2023 Sergey G. Bobkov
Gennadiy Chistyakov
Friedrich Götze
+ PDF Chat Poincaré inequality for abstract spaces 2005 Alireza Ranjbar‐Motlagh
+ First order Poincaré inequalities in metric measure spaces 2013 Estíbalitz Durand-Cartagena
Jesús Á. Jaramillo
Nageswari Shanmugalingam
+ A note on metric-measure spaces supporting Poincar\'e inequalities 2019 Ryan Alvarado
Piotr Hajłasz