On the range of Carmichael's universal-exponent function

Type: Article

Publication Date: 2014-01-01

Citations: 6

DOI: https://doi.org/10.4064/aa162-3-6

Abstract

Let $\lambda $ denote Carmichael's function, so $\lambda (n)$ is the universal exponent for the multiplicative group modulo $n$. It is closely related to Euler's $\varphi $-function, but we show here that the image of $\lambda $ is much denser than the im

Locations

Similar Works

Action Title Year Authors
+ Two problems on the distribution of Carmichael's lambda function 2023 Paul Pollack
+ On the Euler-Mascheroni constant 2013 Juozas Juvencijus Mačys
+ On a multiplicative analogue of Goldbach’s conjecture 1999 P. D. T. A. Elliott
+ Euler’s function on products of primes in a fixed arithmetic progression 2019 Amir Akbary
Forrest J. Francis
+ PDF Chat A universal exponent for homeomorphs 2021 Peter Keevash
Jason Long
Bhargav Narayanan
Alex Scott
+ On the exponent and the order of the groups $$\tilde J$$ (X) 1978 François Sigrist
Ueli Suter
+ PDF Chat The Base of Napier's Logarithms 1904 G. B. M.
+ Carmichael numbers in number rings 2007 G. Ander Steele
+ The iterated Carmichael lambda function 2012 Nicholas Harland
+ The iterated Carmichael lambda function 2011 Nick Harland
+ Euler's Function on Products of Primes in Progressions 2018 Amir Akbary
Forrest J. Francis
+ On Generalized Carmichael Numbers 2021 Yongyi Chen
Tae Kyu Kim
+ PDF Chat On a property of the minimal universal exponent, λ(x) 1962 Hans Riesel
+ A note on Carmichael numbers in residue classes 2021 Carl Pomerance
+ On the Exponent of the Ideal Class Group of Q (√-d) 1995 Francesco Pappalardi
+ Spectrum of all multiplicative functions with application to powerfull numbers 2024 Tsz Ho Chan
+ PDF Chat On the Critical Exponent for k-Primitive Sets 2021 Tsz Ho Chan
Jared Duker Lichtman
Carl Pomerance
+ On the Tate constant 1984 Bernard Dwork
+ On the Tate constant 1987 Bernard Dwork
+ Chapter 5. The Mordell-Weil theorem and heights 2003 Susanne Schmitt
Horst G. Zimmer