Generation of relative commutator subgroups in Chevalley groups. II

Type: Article

Publication Date: 2020-03-02

Citations: 13

DOI: https://doi.org/10.1017/s0013091519000555

Abstract

Abstract In the present paper, which is a direct sequel of our paper [14] joint with Roozbeh Hazrat, we prove an unrelativized version of the standard commutator formula in the setting of Chevalley groups. Namely, let Φ be a reduced irreducible root system of rank ≥ 2, let R be a commutative ring and let I , J be two ideals of R . We consider subgroups of the Chevalley group G (Φ, R ) of type Φ over R . The unrelativized elementary subgroup E (Φ, I ) of level I is generated (as a group) by the elementary unipotents x α (ξ), α ∈ Φ, ξ ∈ I , of level I . Obviously, in general, E (Φ, I ) has no chance to be normal in E (Φ, R ); its normal closure in the absolute elementary subgroup E (Φ, R ) is denoted by E (Φ, R , I ). The main results of [14] implied that the commutator [ E (Φ, I ), E (Φ, J )] is in fact normal in E (Φ, R ). In the present paper we prove an unexpected result, that in fact [ E (Φ, I ), E (Φ, J )] = [ E (Φ, R , I ), E (Φ, R , J )]. It follows that the standard commutator formula also holds in the unrelativized form, namely [ E (Φ, I ), C (Φ, R , J )] = [ E (Φ, I ), E (Φ, J )], where C (Φ, R , I ) is the full congruence subgroup of level I . In particular, E (Φ, I ) is normal in C (Φ, R , I ).

Locations

  • Proceedings of the Edinburgh Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Commutators of relative and unrelative elementary subgroups in Chevalley groups 2020 N. A. Vavilov
Zuhong Zhang
+ PDF Chat Generation of relative commutator subgroups in Chevalley groups 2015 Roozbeh Hazrat
N. A. Vavilov
Zuhong Zhang
+ Generation of relative commutator subgroups in Chevalley groups 2012 Roozbeh Hazrat
N. A. Vavilov
Zuhong Zhang
+ Commutators of relative and unrelative elementary unitary groups 2020 N. A. Vavilov
Zuhong Zhang
+ Relative commutator calculus in Chevalley groups 2013 Roozbeh Hazrat
N. A. Vavilov
Zuhong Zhang
+ Relative and unrelative elementary groups, revisited 2019 N. A. Vavilov
Zuhong Zhang
+ Relative and unrelative elementary groups, revisited 2019 N. A. Vavilov
Zuhong Zhang
+ Structure of Chevalley groups over rings via universal localization 2015 A. V. Stepanov
+ PDF Chat Commutators of relative and unrelative elementary unitary groups 2022 N. A. Vavilov
Zuhong Zhang
+ PDF Chat Relative subgroups in Chevalley groups 2010 Roozbeh Hazrat
V. A. Petrov
N. A. Vavilov
+ PDF Chat COMMUTATORS OF ELEMENTARY SUBGROUPS: CURIOUSER AND CURIOUSER 2021 N. A. Vavilov
Zhiyue Zhang
+ Multiple commutators of elementary subgroups: end of the line 2019 N. A. Vavilov
Zuhong Zhang
+ Relative commutator calculus in Chevalley groups 2011 Roozbeh Hazrat
N. A. Vavilov
Zuhong Zhang
+ Multiple commutators of elementary subgroups: end of the line 2020 N. A. Vavilov
Zuhong Zhang
+ Commutators of elementary subgroups: curiouser and curiouser 2020 N. A. Vavilov
Zuhong Zhang
+ New view on decomposition of unipotents and normal structure of Chevalley groups 2015 A. V. Stepanov
+ Free product subgroups between Chevalley groups <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>Φ</mml:mi><mml:mo>,</mml:mo><mml:mi>F</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi mathvariant="normal">G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>Φ</mml… 2010 A. V. Stepanov
+ Centrality of the congruence kernel for elementary subgroups of Chevalley groups of rank &gt;1 over noetherian rings 2011 Andrei S. Rapinchuk
Igor A. Rapinchuk
+ Relative centralisers of relative subgroups 2020 N. A. Vavilov
Zuhong Zhang
+ On root-class residuality of generalized free products 2004 Д. Н. Азаров
Daniel Tieudjo