Local-global principles for torsors over arithmetic curves

Type: Article

Publication Date: 2015-12-01

Citations: 53

DOI: https://doi.org/10.1353/ajm.2015.0039

Abstract

We consider local-global principles for torsors under linear algebraic groups, over function fields of curves over complete discretely valued fields. The obstruction to such a principle is a version of the Tate-Shafarevich group; and for groups with rational components, we compute it explicitly and show that it is finite. This yields necessary and sufficient conditions for local-global principles to hold. Our results rely on first obtaining a Mayer-Vietoris sequence for Galois cohomology and then showing that torsors can be patched. We also give new applications to quadratic forms and central simple algebras.

Locations

  • American Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Local-global principles for torsors over arithmetic curves 2011 David Harbater
Julia Hartmann
Daniel Krashen
+ Local-global principles for Galois cohomology 2012 David Harbater
Julia Hartmann
Daniel Krashen
+ Local-global principles for Galois cohomology 2012 David Harbater
Julia Hartmann
Daniel Krashen
+ PDF Chat Local-global principles for Galois cohomology 2014 David Harbater
Julia Hartmann
Daniel Krashen
+ PDF Chat Abelian Varieties and Number Theory 2021 Moshe Jarden
Tony Shaska
+ Local-global principles for tori over arithmetic curves 2020 Jean-Louis Colliot-ThélÚne
David Harbater
Julia Hartmann
Daniel Krashen
R. Parimala
Venapally Suresh
+ Local-global questions for tori over $p$-adic function fields 2013 David Harari
TamĂĄs Szamuely
+ Local-global questions for tori over $p$-adic function fields 2013 David Harari
TamĂĄs Szamuely
+ PDF Chat Local-Global Principles for Constant Reductive Groups over Semi-Global Fields 2022 Jean-Louis Colliot-ThélÚne
David Harbater
Julia Hartmann
Daniel Krashen
R. Parimala
V. Suresh
+ Local-global questions for tori over 𝑝-adic function fields 2016 David Harari
TamĂĄs Szamuely
+ Local-global principles for constant reductive groups over semi-global fields 2021 Jean-Louis Colliot-ThélÚne
David Harbater
Julia Hartmann
Daniel Krashen
R. Parimala
V. Suresh
+ PDF Chat A comparison between obstructions to local-global principles over semi-global fields 2021 David Harbater
Julia Hartmann
Valentijn Karemaker
Florian Pop
+ Gerbe patching and a Mayer-Vietoris sequence over arithmetic curves 2017 Bastian Haase
+ A comparison between obstructions to local-global principles over semiglobal fields 2019 David Harbater
Julia Hartmann
Valentijn Karemaker
Florian Pop
+ A comparison between obstructions to local-global principles over semiglobal fields 2019 David Harbater
Julia Hartmann
Valentijn Karemaker
Florian Pop
+ PDF Chat Local-global principles for homogeneous spaces over some two-dimensional geometric global fields 2021 Diego MunguĂ­a Izquierdo
Giancarlo Lucchini Arteche
+ Local-global principles for homogeneous spaces over some two-dimensional geometric global fields 2021 Diego MunguĂ­a Izquierdo
Giancarlo Lucchini Arteche
+ Local-global principles for homogeneous spaces of reductive groups over global function fields 2021 Cyril Demarche
David Harari
+ Duality for complexes of tori over a global field of positive characteristic 2020 Cyril Demarche
David Harari
+ Duality for complexes of tori over a global field of positive characteristic 2020 Cyril Demarche
David Harari