Norm of convolution by operator-valued functions on free groups

Type: Article

Publication Date: 1999-02-04

Citations: 30

DOI: https://doi.org/10.1090/s0002-9939-99-04660-2

Locations

  • Proceedings of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ PDF Chat Norms of free operators 1988 Massimo A. Picardello
Tadeusz Pytlik
+ Convolution operators on groups / Antoine Derighetti 2011 Antoine Derighetti
+ Connection between two-sided and one-sided convolution type operators on non-commutative groups 1995 Vladimir V. Kisil
+ PDF Chat A construction of convolution operators on free groups 1984 Tadeusz Pytlik
+ PDF Chat Norms of Free Operators 1988 Massimo A. Picardello
Tadeusz Pytlik
+ WITHDRAWN: Convolution of discrete measures on linear groups 2007 Mei-Chu Chang
+ PDF Chat Weak$^*$-simplicity of convolution algebras on discrete groups 2024 Jared T. White
+ Convolution of discrete measures on linear groups 2007 Mei-Chu Chang
+ The convolution equation of Choquet and Deny on [IN]-groups 2001 Cho-Ho Chu
Chi-Wai Leung
+ Convolution on homogeneous groups 2010 Susana Coré
Daryl Geller
+ Titchmarsh's Convolution Theorem on Groups 1968 B. P. Weiss
+ PDF Chat Inclusions and noninclusion of spaces of convolution operators 1976 Michael Cowling
John J. F. Fournier
+ PDF Chat A short computation of the norms of free convolution operators 1986 Wolfgang Woess
+ PDF Chat Fractional Gaussian estimates and holomorphy of semigroups 2019 Valentin Keyantuo
Fabian Seoanes
Mahamadi Warma
+ PDF Chat On Voiculescu’s double commutant theorem 1996 C. A. Berger
L. A. Coburn
+ Finite Blaschke Products and Operator Theory 2018 Stephan Ramon Garcia
Javad Mashreghi
William T. Ross
+ H∞-calculus for Products of Non-Commuting operators 2005 Robert Haller‐Dintelmann
Matthias Hieber
+ PDF Chat 𝐿^{𝑝}-convolution operators supported by subgroups 1972 Charles F. Dunkl
Donald E. Ramirez
+ PDF Chat Boundedness of Commutators on Generalized Morrey Spaces 2009 Cai Yu-ze
Hao Zhang
+ Calculus on normed spaces 2015 John Roe