An asymptotic expansion for the expected number of real zeros of a random polynomial

Type: Article

Publication Date: 1988-01-01

Citations: 81

DOI: https://doi.org/10.1090/s0002-9939-1988-0955018-1

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="nu Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\nu _n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the expected number of real zeros of a polynomial of degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose coefficients are independent random variables, normally distributed with mean 0 and variance 1. We find an asymptotic expansion for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="nu Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\nu _n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the form <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="nu Subscript n Baseline equals StartFraction 2 Over pi EndFraction log left-parenthesis n plus 1 right-parenthesis plus sigma-summation Underscript p equals 0 Overscript normal infinity Endscripts upper A Subscript p Baseline left-parenthesis n plus 1 right-parenthesis Superscript negative p"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mn>2</mml:mn> <mml:mi>π<!-- π --></mml:mi> </mml:mfrac> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>+</mml:mo> <mml:munderover> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:munderover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\nu _n = \frac {2}{\pi } \log (n + 1) + \sum \limits _{p = 0}^\infty {{A_p}{{(n + 1)}^{ - p}}}</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> in which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A 0 equals 0.625735818 comma upper A 1 equals 0 comma upper A 2 equals negative 0.24261274 comma upper A 3 equals 0 comma upper A 4 equals negative 0.08794067 comma upper A 5 equals 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0.625735818</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>0.24261274</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>3</mml:mn> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>0.08794067</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_0} = 0.625735818,{A_1} = 0,{A_2} = - 0.24261274,{A_3} = 0,{A_4} = - 0.08794067,{A_5} = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The numerical values of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="nu Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\nu _n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> calculated from this expansion, using only the first four, or six, coefficients, agree with previously tabulated seven decimal place values <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis 1 less-than-or-equal-to n less-than-or-equal-to 100 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>n</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>100</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(1 \leq n \leq 100)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with an error of at most <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="10 Superscript negative 7"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>7</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{10^{ - 7}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 30"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>30</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geq 30</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 8"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geq 8</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Random polynomials having few or no real zeros 2002 Amir Dembo
Bjorn Poonen
Qi-Man Shao
Ofer Zeitouni
+ PDF Chat An Asymptotic Expansion for the Expected Number of Real Zeros of a Random Polynomial 1988 J. Ernest Wilkins
+ PDF Chat How many zeros of a random polynomial are real? 1995 Alan Edelman
Eric Kostlan
+ PDF Chat On the lower bound of the number of real roots of a random algebraic equation with infinite variance 1972 G. Samal
Μ. N. Mishra
+ PDF Chat Real zeros of a random sum of orthogonal polynomials 1971 Minaketan Das
+ Real roots near the unit circle of random polynomials 2021 Marcus Michelen
+ PDF Chat On the upper bound of the number of real roots of a random algebraic equation with infinite variance. II 1974 G. Samal
Μ. N. Mishra
+ PDF Chat The complex zeros of random polynomials 1995 L. A. Shepp
Robert J. Vanderbei
+ Real zeros of random trigonometric polynomials with dependent coefficients 2022 Jürgen Angst
Thibault Pautrel
Guillaume Poly
+ Algebraic polynomials with non-identical random coefficients 2004 K. Farahmand
Ahmad Nezakati
+ PDF Chat On random polynomials with an intermediate number of real roots 2024 Marcus Michelen
Sean O’Rourke
+ PDF Chat On the number of real zeros of a random trigonometric polynomial 1978 M. Sambandham
+ Random orthonormal polynomials: Local universality and expected number of real roots 2023 Yen Do
Hoi H. Nguyen
Van Vu
+ On the Expected Number of Real Zeros of Random Polynomials. II. Coefficients With Non-Zero Means 1971 И. А. Ибрагимов
N. B. Maslova
+ An asymptotic property of the roots of polynomials 1971 H. Flaschka
+ PDF Chat Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients 2010 Лэрри А Шепп
L. A. Shepp
K. Farahmand
K. Farahmand
+ Random polynomials with prescribed Newton polytope 2003 Bernard Shiffman
Steve Zelditch
+ An asymptotic expansion for the expected number of real zeros of real random polynomials spanned by OPUC 2018 Hanan Aljubran
Maxim L. Yattselev
+ PDF Chat Concentration of the number of real roots of random polynomials 2024 Ander Aguirre
Hoi H. Nguyen
Jingheng Wang
+ On random algebraic polynomials 1999 K. Farahmand