On Edge Colorings with at Least q Colors in Every Subset of p Vertices

Type: Article

Publication Date: 2000-12-07

Citations: 27

DOI: https://doi.org/10.37236/1553

Abstract

For fixed integers $p$ and $q$, an edge coloring of $K_n$ is called a $(p, q)$-coloring if the edges of $K_n$ in every subset of $p$ vertices are colored with at least $q$ distinct colors. Let $f(n, p, q)$ be the smallest number of colors needed for a $(p, q)$-coloring of $K_n$. In [3] Erdős and Gyárfás studied this function if $p$ and $q$ are fixed and $n$ tends to infinity. They determined for every $p$ the smallest $q$ ($= {p \choose 2} - p + 3$) for which $f(n,p,q)$ is linear in $n$ and the smallest $q$ for which $f(n,p,q)$ is quadratic in $n$. They raised the question whether perhaps this is the only $q$ value which results in a linear $f(n,p,q)$. In this paper we study the behavior of $f(n,p,q)$ between the linear and quadratic orders of magnitude. In particular we show that that we can have at most $\log p$ values of $q$ which give a linear $f(n,p,q)$.

Locations

  • The Electronic Journal of Combinatorics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat An Explicit Edge-Coloring of $K_n$ with Six Colors on Every $K_5$ 2019 Alex Cameron
+ PDF Chat The Erdős-Gyárfás problem on generalized Ramsey numbers 2014 David Conlon
Jacob Fox
Choongbum Lee
Benny Sudakov
+ A $(5,5)$-coloring of $K_n$ with few colors 2017 Alex Cameron
Emily Heath
+ A $(5,5)$-coloring of $K_n$ with few colors 2017 Alex Cameron
Emily Heath
+ The Erd\H{o}s-Gy\'{a}rf\'{a}s function with respect to Gallai-colorings 2020 Xihe Li
Hajo Broersma
Ligong Wang
+ New Upper Bounds for the Erdős-Gyárfás Problem on Generalized Ramsey Numbers 2020 Alex Cameron
Emily Heath
+ On the Problem of Erdős and Hajnal in the Case of List Colorings 2009 A. P. Rozovskaya
D. A. Shabanov
+ Cliques with many colors in triple systems 2020 Dhruv Mubayi
Andrew Suk
+ Generalized Ramsey Numbers at the Linear and Quadratic Thresholds 2025 Patrick Bennett
Ryan Cushman
Andrzej Dudek
+ The Erdős-Gyárfás function $f(n, 4, 5) = \frac 56 n + o(n)$ -- so Gyárfás was right 2022 Patrick Bennett
Ryan Cushman
Andrzej Dudek
Paweł Prałat
+ Coloring Graph Powers: Graph Product Bounds and Hardness of Approximation 2014 Parinya Chalermsook
Bundit Laekhanukit
Danupon Nanongkai
+ On the number of edge-colourings of regular bipartite graphs 1982 Alexander Schrijver
+ On locally rainbow colourings 2023 Barnabás Janzer
Oliver Janzer
+ Lower bounds on the Erdős-Gyárfás problem via color energy graphs 2021 József Balogh
Sean English
Emily Heath
Robert A. Krueger
+ On two $q$-ary $n$-cube coloring problems 2015 Zhe Han
Ming‐Hui Lu
+ On a List-Coloring Version of the Erdös-Faber-Lovász Conjecture 2009 Suneil Vallabh
+ On a problem of Erdős and Rothschild on edges in triangles 2011 Jacob Fox
Po‐Shen Loh
+ PDF Chat The upper logarithmic density of monochromatic subset sums 2022 David Conlon
Jacob Fox
Huy Tuan Pham
+ How many edge-colors for almost-rainbow $K_5$s? 2008 Elliot Krop
+ PDF Chat Almost -rainbow edge-colorings of some small graphs 2013 Elliot Krop
Irina Krop

Works That Cite This (26)

Action Title Year Authors
+ The Erdős-Gyárfás function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mn>4</mml:mn><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mfrac><mml:mrow><mml:mn>5</mml:mn></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:mfrac><mml:mi>n</mml:mi><mml:mo linebreak="goodbreak" … 2024 Patrick Bennett
Ryan Cushman
Andrzej Dudek
Paweł Prałat
+ An application of the regularity lemma in generalized Ramsey theory 2003 Gábor N. Sárközy
Stanley M. Selkow
+ PDF Chat When is an Almost Monochromatic<i>K</i><sub>4</sub>Guaranteed? 2008 Alexandr Kostochka
Dhruv Mubayi
+ PDF Chat New bounds on the generalized Ramsey number f(n,5,8) 2024 Enrique Gomez-Leos
Emily Heath
Alex Parker
Coy Schwieder
Shira Zerbib
+ The Erd\H{o}s-Gy\'{a}rf\'{a}s function with respect to Gallai-colorings 2020 Xihe Li
Hajo Broersma
Ligong Wang
+ Graphs with the n-e.c. adjacency property constructed from affine planes 2007 Catharine A. Baker
Anthony Bonato
Julia M. Nowlin Brown
Tamás Szőnyi
+ PDF Chat Local Properties via Color Energy Graphs and Forbidden Configurations 2020 Sara Fish
Cosmin Pohoata
Adam Sheffer
+ PDF Chat Recent developments in graph Ramsey theory 2015 David Conlon
Jacob Fox
Benny Sudakov
+ PDF Chat Local Properties in Colored Graphs, Distinct Distances, and Difference Sets 2019 Cosmin Pohoata
Adam Sheffer
+ Gallai-Ramsey numbers for graphs and their generalizations 2021 Xihe Li