Bounded Independence Fools Degree-2 Threshold Functions

Type: Article

Publication Date: 2010-10-01

Citations: 94

DOI: https://doi.org/10.1109/focs.2010.8

Download PDF

Abstract

For an n-variate degree-2 real polynomial p, we prove that E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x~D</sub> [sig(p(x))] Is determined up to an additive ε as long as D is a k-wise Independent distribution over {-1, 1} <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> for k = poly(1/ε). This gives a broad class of explicit pseudorandom generators against degree-2 boolean threshold functions, and answers an open question of Diakonikolas et al. (FOCS 2009).

Locations

  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Digital Access to Scholarship at Harvard (DASH) (Harvard University) - View - PDF

Similar Works

Action Title Year Authors
+ Bounded Independence Fools Degree-2 Threshold Functions 2009 Ilias Diakonikolas
Daniel M. Kane
Jelani Nelson
+ Bounded Independence Fools Degree-2 Threshold Functions 2009 Ilias Diakonikolas
Daniel M. Kane
Jelani Nelson
+ Polynomial Threshold Functions: Structure, Approximation and Pseudorandomness 2009 Ido Ben‐Eliezer
Shachar Lovett
Ariel Yadin
+ Polynomial Threshold Functions: Structure, Approximation and Pseudorandomness 2009 Ido Ben‐Eliezer
Shachar Lovett
Ariel Yadin
+ PDF Chat Pseudorandom Generators for Polynomial Threshold Functions 2013 Raghu Meka
David Zuckerman
+ A Polylogarithmic PRG for Degree $2$ Threshold Functions in the Gaussian Setting 2014 Daniel M. Kane
+ Deterministic Approximate Counting for Juntas of Degree-$2$ Polynomial Threshold Functions 2013 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ Deterministic Approximate Counting for Juntas of Degree-$2$ Polynomial Threshold Functions 2013 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ Pseudorandom Generators for Polynomial Threshold Functions 2009 Raghu Meka
David Zuckerman
+ Pseudorandom Generators for Polynomial Threshold Functions 2009 Raghu Meka
David Zuckerman
+ A polylogarithmic PRG for degree 2 threshold functions in the gaussian setting 2015 Daniel M. Kane
+ PDF Chat Pseudorandom generators for polynomial threshold functions 2010 Raghu Meka
David Zuckerman
+ Deterministic Approximate Counting for Degree-2 Polynomial Threshold Functions. 2013 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ A Small PRG for Polynomial Threshold Functions of Gaussians 2011 Daniel M. Kane
+ A Small PRG for Polynomial Threshold Functions of Gaussians 2011 Daniel M. Kane
+ Random restrictions and PRGs for PTFs in Gaussian Space. 2021 Zander Kelley
Raghu Meka
+ Random restrictions and PRGs for PTFs in Gaussian Space 2021 Zander Kelley
Raghu Meka
+ Random restrictions and PRGs for PTFs in Gaussian Space 2021 Zander Kelley
Raghu Meka
+ A PRG for boolean PTF of degree 2 with seed length subpolynomial in ϵ and logarithmic in n 2018 Daniel M. Kane
Sankeerth Rao
+ PDF Chat A Pseudorandom Generator for Polynomial Threshold Functions of Gaussian with Subpolynomial Seed Length 2014 Daniel M. Kane