Gradient recovery in adaptive finite-element methods for parabolic problems

Type: Article

Publication Date: 2011-06-10

Citations: 20

DOI: https://doi.org/10.1093/imanum/drq019

Abstract

We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation.This appears to be the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size.An essential tool for the analysis is the elliptic reconstruction technique.Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators.An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA in the appendix.

Locations

  • IMA Journal of Numerical Analysis - View
  • arXiv (Cornell University) - View - PDF
  • Pure (University of Bath) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat A Posteriori Error Control for Discontinuous Galerkin Methods for Parabolic Problems 2011 Emmanuil H. Georgoulis
Omar Lakkis
Juha M. Virtanen
+ Energy-norm error estimates for finite element discretization of parabolic problems 2015 Herbert Egger
+ Energy-norm error estimates for finite element discretization of parabolic problems 2015 Herbert Egger
+ Long time $L^\infty(L^2)$ a posteriori error estimates for fully discrete parabolic problems 2018 Oliver J. Sutton
+ Long time $L^\infty(L^2)$ a posteriori error estimates for fully discrete parabolic problems 2018 Oliver J. Sutton
+ PDF Chat Recovery Techniques for Finite Element Methods 2024 Hailong Guo
Zhimin Zhang
+ Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems 2006 Omar Lakkis
Charalambos Makridakis
+ PDF Chat Equilibrated flux a posteriori error estimates in $L^2(H^1)$-norms for high-order discretizations of parabolic problems 2018 Alexandre Ern
Iain Smears
Martin Vohralı́k
+ Scalable Recovery-based Adaptation on Quadtree Meshes for Advection-Diffusion-Reaction Problems 2022 Pasquale Claudio Africa
Simona Perotto
Carlo de Falco
+ A posteriori error estimates for parabolic problems via elliptic reconstruction and duality 2007 Omar Lakkis
Charalambos Makridakis
+ Massively parallel-in-space-time, adaptive finite element framework for non-linear parabolic equations 2016 Robert Dyja
Baskar Ganapathysubramanian
Kristoffer G. van der Zee
+ PDF Chat Reliable anisotropic-adaptive discontinuous Galerkin method for simplified <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml63" display="inline" overflow="scroll" altimg="si63.gif"><mml:msub><mml:mrow><mml:mi mathvariant="bold">P</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="bold">N</mml:mi></mml:mrow></mml:msub></mml:math> approximations of radiative transfer 2018 Stefano Giani
+ A least-squares Galerkin gradient recovery method for fully nonlinear elliptic equations 2020 Omar Lakkis
Amireh Mousavi
+ PDF Chat Maximum-Norm Stability, Smoothing and Resolvent Estimates for Parabolic Finite Element Equations 2007 Vidar Thomée
+ PDF Chat A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems 2009 Alan Demlow
Omar Lakkis
Charalambos Makridakis
+ PDF Chat Adaptive Finite Element Methods 2024 Andrea Bonito
Claudio Canuto
Ricardo H. Nochetto
Andreas Veeser
+ Higher-Order GFDM for Linear Elliptic Operators 2023 Heinrich Kraus
Jörg Kuhnert
Pratik Suchde
+ Grid approximation of a parabolic convection-diffusion equation on a priori adapted grids: ε-uniformly convergent schemes 2008 G. I. Shishkin
+ PDF Chat A posteriori error bounds for fully-discrete hp-discontinuous Galerkin timestepping methods for parabolic problems 2021 Emmanuil H. Georgoulis
Omar Lakkis
Thomas P. Wihler
+ PDF Chat Parallel-In-Space-Time, Adaptive Finite Element Framework for Nonlinear Parabolic Equations 2018 Robert Dyja
Baskar Ganapathysubramanian
Kristoffer G. van der Zee