A derivation of the isothermal quantum hydrodynamic equations using entropy minimization

Type: Article

Publication Date: 2005-08-19

Citations: 45

DOI: https://doi.org/10.1002/zamm.200510232

Locations

  • ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik - View

Similar Works

Action Title Year Authors
+ PDF Chat Isothermal Quantum Hydrodynamics: Derivation, Asymptotic Analysis, and Simulation 2007 Pierre Degond
S. Gallégo
Florian Méhats
+ On a New Isothermal Quantum Euler Model: Derivation, Asymptotic Analysis and Simulation 2007 Pierre Degond
S. Gallégo
Florian Méhats
+ Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle 2008 Pierre Degond
S. Gallégo
Florian Méhats
Christian Ringhofer
+ PDF Chat Derivation of viscous correction terms for the isothermal quantum Euler model 2010 Stéphane Brull
Florian Méhats
+ PDF Chat Derivation of Isothermal Quantum Fluid Equations with Fermi-Dirac and Bose-Einstein Statistics 2012 Luigi Barletti
Carlo Cintolesi
+ Quantum Navier–Stokes Equations 2012 Ansgar Jüngel
Josipa‐Pina Milišić
+ PDF Chat A Note on quantum moment hydrodynamics and the entropy principle 2002 Pierre Degond
Christian Ringhofer
+ Small Scale Hydrodynamics 2015 Matteo Colangeli
+ PDF Chat Kinetic Approach for Quantum Hydrodynamic Equations 2008 Massimo Tessarotto
Marco Ellero
Piero Nicolini
Takashi Abe
+ PDF Chat Hermann Hankel's "On the general theory of motion of fluids", an essay including an English translation of the complete Preisschrift from 1861 2017 B. Villone
Cornelius Rampf
+ PDF Chat Entropy and Non-Equilibrium Statistical Mechanics 2020 A.M. Scarfone
Sumiyoshi Abe
Róbert Kovács
+ A study in quantum hydrodynamics 1960 Herbert A Zook
+ Comment on Clebsch’s 1857 and 1859 papers on using Hamiltonian methods in hydrodynamics 2021 Gérard Grimberg
E. Tassi
+ PDF Chat Lecture notes on Generalised Hydrodynamics 2020 Benjamin Doyon
+ Semiclassical Limit for One-Dimensional Stationary Viscous Quantum Hydrodynamic Model 2010 Jianwei Dong
+ 'On the general theory of motion of fluids,' a translation of the German-written Preisschrift by Hermann Hankel, 1861, G\"ottingen and connected documents 2017 B. Villone
Cornelius Rampf
+ The Hamilton-Jacobi method in the non-Hamiltonian situation and the hydrodynamic substitution 2015 V. V. Vedenyapin
Н. Н. Фимин
+ Boltzmann's Equation and Classical Hydrodynamic Models Based on Maximum Entropy Principle 2010 Jinn‐Liang Liu
+ Entropy methods in hydrodynamic scaling 1993 S. R. S. Varadhan
+ PDF Chat Investigating Puzzling Aspects of the Quantum Theory by Means of Its Hydrodynamic Formulation 2015 Ángel S. Sanz