Matrix Ansatz, lattice paths and rook placements

Type: Article

Publication Date: 2009-01-01

Citations: 19

DOI: https://doi.org/10.46298/dmtcs.2751

Abstract

We give two combinatorial interpretations of the Matrix Ansatz of the PASEP in terms of lattice paths and rook placements. This gives two (mostly) combinatorial proofs of a new enumeration formula for the partition function of the PASEP. Besides other interpretations, this formula gives the generating function for permutations of a given size with respect to the number of ascents and occurrences of the pattern $13-2$, the generating function according to weak exceedances and crossings, and the $n^{\mathrm{th}}$ moment of certain $q$-Laguerre polynomials. Nous donnons deux interprétations combinatoires du Matrix Ansatz du PASEP en termes de chemins et de placements de tours. Cela donne deux preuves (presque) combinatoires d'une nouvelle formule pour la fonction de partition du PASEP. Cette formule donne aussi par exemple la fonction génératrice des permutations de taille donnée par rapport au nombre de montées et d'occurrences du motif $13-2$, la fonction génératrice par rapport au nombre d'excédences faibles et de croisements, et le $n^{\mathrm{ième}}$ moment de certains polynômes de $q$-Laguerre.

Locations

  • Discrete Mathematics & Theoretical Computer Science - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ Matrix Ansatz, lattice paths and rook placements 2008 Sylvie Corteel
Matthieu Josuat-Vergès
Thomas Prellberg
Martin Rubey
+ Matrix Ansatz, lattice paths and rook placements 2008 Sylvie Corteel
Matthieu Josuat-Vergès
Thomas Prellberg
Martin Rubey
+ Rook placements in Young diagrams and permutation enumeration 2008 Matthieu Josuat-Vergès
+ Rook placements in Young diagrams and permutation enumeration 2008 Matthieu Josuat-Vergès
+ PDF Chat Rook placements in Young diagrams and permutation enumeration 2010 Matthieu Josuat-Vergès
+ PDF Chat Statistics on Lattice Walks and q-Lassalle Numbers 2015 Lenny Tevlin
+ PDF Chat Bijections for lattice paths between two boundaries 2012 Sergi Elizalde
Martin Rubey
+ PDF Chat The sandpile model, polyominoes, and a $q,t$-Narayana polynomial 2012 Mark Dukes
Yvan Le Borgne
+ Énumération de polyominos définis en terme d'évitement de motif ou de contraintes de convexité 2014 Daniela Battaglino
+ Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics 2018 Bryan Ek
+ Unimodal polynomials and lattice walk enumeration with experimental mathematics 2018 Bryan Ek
+ Enumeration of polyominoes defined in terms of pattern avoidance or convexity constraints 2014 Daniela Battaglino
+ The Matrix Ansatz, Orthogonal Polynomials, and Permutations 2010 Sylvie Corteel
Matthieu Josuat-Vergès
Lauren Williams
+ The Matrix Ansatz, Orthogonal Polynomials, and Permutations 2010 Sylvie Corteel
Matthieu Josuat-Vergès
Lauren Williams
+ The Matrix Ansatz, orthogonal polynomials, and permutations 2010 Sylvie Corteel
Matthieu Josuat-Vergès
Lauren Williams
+ Parallelogram polyominoes, the sandpile model on a complete bipartite graph, and a q,t-Narayana polynomial 2012 Mark Dukes
Yvan Le Borgne
+ Parallelogram polyominoes, the sandpile model on a complete bipartite graph, and a q,t-Narayana polynomial 2012 Mark Dukes
Yvan Le Borgne
+ Automatic Enumeration of Generalized Menage Numbers 2014 Doron Zeilberger
+ PDF Chat Mesh Patterns and the Expansion of Permutation Statistics as Sums of Permutation Patterns 2011 Petter Brändén
Anders Claesson
+ Combinatorics of Triangular Partitions 2022 François Bergeron
Mikhail Mazin