Type: Article
Publication Date: 2008-12-31
Citations: 100
DOI: https://doi.org/10.1111/j.1745-3933.2008.00580.x
Abstract We present an analysis of the extreme obscuration variability observed during an XMM–Newton 5-d continuous monitoring of the active galactic nuclei (AGN) in NGC 1365. The source was in a reflection-dominated state in the first ∼1.5 d, then a strong increase in the 7—10 keV emission was observed in ∼10 h, followed by a symmetric decrease. The spectral analysis of the different states clearly shows that this variation is due to an uncovering of the X-ray source. From this observation, we estimate a size of the X-ray source DS < 1013 cm, a distance of the obscuring clouds R∼ 1016 cm and a density n∼ 1011 cm−3. These values suggest that the X-ray absorption/reflection originates from the broad-line region clouds. This is also supported by the resolved width of the iron narrow Kα emission line, consistent with the width of the broad Hβ line.