A new proof of the limit formula of Kronecker

Type: Article

Publication Date: 1968-01-01

Citations: 14

DOI: https://doi.org/10.3792/pja/1195521077

Abstract

Let Q(x, y)= ax + 2bxy + cy (d= ac-b) be a positive definite quadratic orm with discriminant -4d.The Epstein zeta-unction of Q is defined byfor a>l.

Locations

  • Proceedings of the Japan Academy Series A Mathematical Sciences - View - PDF

Similar Works

Action Title Year Authors
+ An application of the Kronecker limit formula 1994 Mohamed Amrani
+ On a generalization of Kronecker’s limit formula 2016 Sami Omar
+ Applications of a limit formula of Kronecker’s type 2003 Hiroyuki Yoshida
+ A simple proof of a Theorem of Kronecker 1929 L. C. Mathewson
+ PDF Chat A refinement of two theorems of Kronecker. 1965 Andrzej Schinzel
Hans Zassenhaus
+ PDF Chat On Kronecker's limit formula and the hypergeometric function. 2008 Shigeru Kanemitsu
Yoshio Tanigawa
Haruo Tsukada
+ A Kronecker limit formula for real quadratic fields 1975 Don Zagier
+ Two variations of a theorem of Kronecker 2005 Artūras Dubickas
Chris Smyth
+ PDF Chat Generalization of a theorem of Kronecker 1931 B. L. van der Waerden
+ An elementary proof of a theorem of Kronecker 1977 Joel Spencer
+ A Simple Proof for a Theorem of Kronecker 1978 Gebhard Greiter
+ A Simple Proof for a Theorem of Kronecker 1978 Gebhard Greiter
+ An equivalent of Kronecker's Theorem for powers of an Algebraic Number 2009 Nevio Dubbini
Maurizio Monge
+ Some Applications of Kronecker's Limit Formulas 1964 K. Ramachandra
+ The Kronecker limit formulas via the distribution relation 2008 Kenichi Bannai
Shinichi Kobayashi
+ A note on the Kronecker limit formula for real quadratic fields 1986 Shigeki Egami
+ PDF Chat A note on Kronecker’s approximation theorem 2024 Daria Maksimova
+ A Note on Kronecker's Approximation Theorem 1986 Ka-Lam Kueh
+ A Note on Kronecker's Approximation Theorem 1986 Ka-Lam Kueh
+ A note on Kronecker's approximation theorem 1986 KuehKa Lam