Type: Article
Publication Date: 1989-01-01
Citations: 10
DOI: https://doi.org/10.1090/s0002-9947-1989-0974775-7
The homogeneous tree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {T}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q plus 1 left-parenthesis q greater-than-or-equal-to 2 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mspace width="1em" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>q</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">q + 1\quad (q \geq 2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be considered as a discrete analogue of the open unit disc <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">D</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {D}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. On <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">D</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {D}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, every harmonic function satisfies the mean value property (MVP) at every point. Conversely, positive functions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">D</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {D}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> having the MVP with respect to a ball with specified radius at each point of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">D</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {D}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are harmonic under certain assumptions concerning the radius function: results of this type are due to J. R. Baxter, W. Veech and others. Here we consider harmonic functions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {T}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to a natural choice of a discrete Laplacian: the analogous MVP is true in this setting. We present a Lipschitz-type condition on the radius function (which now has integer values and refers to the discrete metric of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {T}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) under which harmonicity holds for positive functions whose value at each point is the mean of its values over the ball of the radius assigned to this point. The method is based upon our previous results concerning the geometrical realization of Martin boundaries of certain transition operators as the space of ends of the underlying graph.