A converse to the mean value property on homogeneous trees

Type: Article

Publication Date: 1989-01-01

Citations: 10

DOI: https://doi.org/10.1090/s0002-9947-1989-0974775-7

Abstract

The homogeneous tree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {T}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q plus 1 left-parenthesis q greater-than-or-equal-to 2 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mspace width="1em" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>q</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">q + 1\quad (q \geq 2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be considered as a discrete analogue of the open unit disc <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">D</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {D}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. On <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">D</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {D}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, every harmonic function satisfies the mean value property (MVP) at every point. Conversely, positive functions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">D</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {D}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> having the MVP with respect to a ball with specified radius at each point of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">D</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {D}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are harmonic under certain assumptions concerning the radius function: results of this type are due to J. R. Baxter, W. Veech and others. Here we consider harmonic functions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {T}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to a natural choice of a discrete Laplacian: the analogous MVP is true in this setting. We present a Lipschitz-type condition on the radius function (which now has integer values and refers to the discrete metric of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper T"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">T</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {T}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) under which harmonicity holds for positive functions whose value at each point is the mean of its values over the ball of the radius assigned to this point. The method is based upon our previous results concerning the geometrical realization of Martin boundaries of certain transition operators as the space of ends of the underlying graph.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A maximal function characterization of 𝐻^{𝑝} on the space of homogeneous type 1980 Akihito Uchiyama
+ A mean value theorem on bounded symmetric domains 1999 Miroslav Engliš
+ PDF Chat A characterization of 𝐹⁺∩𝑁 1976 M. Stoll
+ PDF Chat Some characterizations of 𝐶(ℳ) 1996 Christopher J. Bishop
+ PDF Chat On 𝑁^{ℵ₁} and the almost-Lindelöf property 1975 Stephen H. Hechler
+ Ultradifferentiable functions on lines in ℝⁿ 1999 Tejinder S. Neelon
+ PDF Chat A remark on Dunford-Pettis property in 𝐿₁(𝜇,𝑋) 1994 Raffaella Cilia
+ PDF Chat A generalization of the 𝑐𝑜𝑠𝜋𝜌 theorem 1974 Albert Baernstein
+ PDF Chat Derivatives of 𝐻^{𝑝} functions 1982 Knut Øyma
Serge Rookshin
+ PDF Chat A product theorem for ℱ_{𝓅} classes and an application 1982 Kent Pearce
+ PDF Chat Completeness of {𝑠𝑖𝑛𝑛𝑥+𝐾𝑖 𝑐𝑜𝑠𝑛𝑥} 1971 Jonathan I. Ginsberg
+ PDF Chat On the univalence of a certain integral 1971 E. P. Merkes
Dave Wright
+ PDF Chat A property of 𝑦”’+𝑝(𝑥)𝑦^{’}+1\over2𝑝^{’}(𝑥)𝑦=0 1972 Gary D. Jones
+ PDF Chat Equivalence of the defining sequences for ultradistributions 1993 Soon‐Yeong Chung
Dohan Kim
+ Real 3𝑥+1 2004 Michał Misiurewicz
Ana Rodrigues
+ PDF Chat On the structure of 𝑆 and 𝐶(𝑆) for 𝑆 dyadic 1975 James N. Hagler
+ Uniformly branching trees 2021 Mario Bonk
Daniel Meyer
+ PDF Chat A note on the combinatorial principles ♢(𝐸) 1978 Keith Devlin
+ Change of variable results for 𝐴_{𝑝}- and reverse Hölder 𝑅𝐻ᵣ-classes 1991 Raymond Johnson
C. J. Neugebauer
+ PDF Chat On the theorem of Frullani 1990 Juan Arias de Reyna