Type: Article
Publication Date: 2014-05-14
Citations: 79
DOI: https://doi.org/10.1088/2041-8205/787/2/l24
We investigate the radial dependence of the spectral break separating the inertial from the dissipation range in power density spectra of interplanetary magnetic field fluctuations, between $0.42$ and $5.3$ AU, during radial alignments between MESSENGER and WIND for the inner heliosphere and between WIND and ULYSSES for the outer heliosphere. We found that the spectral break moves to higher and higher frequencies as the heliocentric distance decreases. The radial dependence of the corresponding wavenumber is of the kind $κ_b\sim R^{-1.08}$ in good agreement with that of the wavenumber derived from the linear resonance condition for proton cyclotron damping. These results support conclusions from previous studies which suggest that a cyclotron-resonant dissipation mechanism must participate into the spectral cascade together with other possible kinetic noncyclotron-resonant mechanisms.