The Riesz kernels do not give rise to higher dimensional analogues of the Menger-Melnikov curvature

Type: Article

Publication Date: 1999-01-01

Citations: 35

DOI: https://doi.org/10.5565/publmat_43199_11

Abstract

Ever since the discovery of the connection between the Menger-Melnikov curvature and the Cauchy kernel in the L 2 norm, and its impressive utility in the analytic capacity problem, higher dimensional analogues have been coveted.The lesson from 1-sets was that any such (nontrivial, nonnegative) expression, using the Riesz kernels for m-sets in R n , even in any L k norm (k ∈ N), would probably carry nontrivial information on whether the boundedness of these kernels in the appropriate norm implies rectifiability properties of the underlying sets or measures.Answering such questions would also have an impact on another important problem, namely whether totally unrectifiable m-sets are removable for Lipschitz harmonic functions in R m+1 .It has generally been believed that some such expressions should exist at least for some choices of m, k, or n, but the apparent complexity involved made the search rather difficult, even with the aid of computers.However, our rather surprising result is that, in fact, not a single higher dimensional analogue of this useful curvature can be derived from the Riesz kernels in the same fashion, and that, even for 1-sets, the Menger-Melnikov curvature is unique in a certain sense.

Locations

  • Publicacions Matemàtiques - View
  • RACO (Revistes Catalanes amb Accés Obert) (Consorci de Serveis Universitaris de Catalunya) - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Curvatures of the Melnikov type, Hausdorff dimension, rectifiability, and singular integrals on R<sup>n</sup> 2000 Hany M. Farag
+ Integral Menger curvature for sets of arbitrary dimension and codimension 2010 Sławomir Kolasiński
+ Integral Menger curvature for sets of arbitrary dimension and codimension 2010 Sławomir Kolasiński
+ Integral Menger curvature for sets of arbitrary dimension in $\mathbb{R}^n$. Part I: Uniform Ahlfors regularity 2010 Sławomir Kolasiński
+ PDF Chat Analytic capacity, Calderon-Zygmund operators, and rectifiability 1999 Guy David
+ Characterizations of countably $n$-rectifiable Radon measures by higher-dimensional Menger curvatures 2018 Max Goering
+ Menger curvatures and $C^{1,α}$ rectifiability of measures 2019 Silvia Ghinassi
Max Goering
+ Integral Menger Curvature and Rectifiability of $n$-dimensional Borel sets in Euclidean $N$-space 2015 Martin Meurer
+ RHEINISCH-WESTFÄ LISCHE TECHNISCHE HOCHSCHULE AACHEN 2006 Paweł Strzelecki
Heiko von der Mosel
+ PDF Chat Integral Menger curvature and rectifiability of $n$-dimensional Borel sets in Euclidean $N$-space 2016 Martin Meurer
+ Menger curvatures and $C^{1,\alpha}$ rectifiability of measures. 2019 Silvia Ghinassi
Max Goering
+ Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral 2002 Hervé Pajot
+ PDF Chat Menger curvatures and $$\varvec{C^{1,\alpha }}$$ rectifiability of measures 2019 Silvia Ghinassi
Max Goering
+ REMOVABILITY, SINGULAR INTEGRALS AND RECTIFIABILITY 2009 Pertti Mattila
+ Singular integrals unsuitable for the curvature method whose $L^2$-boundedness still implies rectifiability 2016 Petr Chunaev
Joan Mateu
Xavier Tolsa
+ PDF Chat On the analytic capacity and curvature of some Cantor sets with non-$\sigma$-finite length 1996 Pertti Mattila
+ Integral Menger Curvature and Rectifiability of $n$-dimensional Borel sets in Euclidean $N$-space 2015 Martin Meurer
+ PDF Chat Characterizations of countably $n$-rectifiable radon measures by higher-dimensional Menger curvatures 2021 Max Goering
+ PDF Chat Riesz capacity: monotonicity, continuity, diameter and volume 2024 Carrie Clark
Richard S. Laugesen
+ PDF Chat Caffarelli–Kohn–Nirenberg inequality on metric measure spaces with applications 2013 Alexandru Kristály
Shin-ichi Ohta