An Algorithm for Higher Order Hopf Normal Forms

Type: Article

Publication Date: 1995-01-01

Citations: 11

DOI: https://doi.org/10.3233/sav-1995-2405

Locations

  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ PDF Chat An Algorithm for Higher Order Hopf Normal Forms 1995 A.Y.T. Leung
T. Ge
+ Normal Forms and Bifurcations of Vector Fields 2018 C. Dang Vu-Delcarte
+ An Algorithm for Construction of Normal Forms 2007 V. F. Edneral
+ SIMPLEST NORMAL FORMS OF HOPF AND GENERALIZED HOPF BIFURCATIONS 1999 Pei Yu
+ Hypernormal Form for the Hopf-Zero Bifurcation 1998 Antonio Algaba
E. Freire
E. Gamero
+ AN EFFICIENT METHOD FOR COMPUTING THE SIMPLEST NORMAL FORMS OF VECTOR FIELDS 2003 Peter Yu
Yu Quan Yuan
+ Normal form analysis of nonlinear oscillator equations with automated arbitrary order expansions 2024 André de Figueiredo Stabile
Cyril Touzé
Alessandra Vizzaccaro
+ Normal Forms 2023 Alois Steindl
+ A practical method for computing normal forms in nonlinear oscillation problems 1973 V.M. Starzhinskii
+ Method of normal forms 1993 Ali H. Nayfeh
+ An Introduction to the Normal Form Theory of Ordimary Differential Equations 1990 王铎
+ Normal form for the Poincaré-Andronov-Hopf Bifurcation and the Neimark-Sacker Torus Bifurcation 2020 Veronika Eclerová
Lenka Přibylová
+ A recursive formula for computing the normal forms of difference systems 2023 Ning Song
+ The simplest normal form of Hopf bifurcation 2002 Pei Yu
A.Y.T. Leung
+ Practical normal form computations for vector fields 2004 Sebastian Mayer
Jürgen Scheurle
Sebastian Walcher
+ AN EXPLICIT RECURSIVE FORMULA FOR COMPUTING THE NORMAL FORM AND CENTER MANIFOLD OF GENERAL n-DIMENSIONAL DIFFERENTIAL SYSTEMS ASSOCIATED WITH HOPF BIFURCATION 2013 Yun Tian
Pei Yu
+ Calculation of Coefficients of Simplest Normal Forms of Hopf and Generalized Hopf Bifurcations 2007 Qichang Zhang
+ Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles 2012 Maoan Han
Pei Yu
+ PDF Chat Hopf normal form with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si8.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:math> symmetry and reduction to systems of nonlinearly coupled phase oscillators 2016 Peter Ashwin
Ana Rodrigues
+ Bifurcation and dynamics of a normal form map 2015 Reza Khoshsiar Ghaziani