Schur Times Schubert via the Fomin-Kirillov Algebra

Type: Article

Publication Date: 2014-02-21

Citations: 26

DOI: https://doi.org/10.37236/3659

Abstract

We study multiplication of any Schubert polynomial $\mathfrak{S}_w$ by a Schur polynomial $s_{\lambda}$ (the Schubert polynomial of a Grassmannian permutation) and the expansion of this product in the ring of Schubert polynomials. We derive explicit nonnegative combinatorial expressions for the expansion coefficients for certain special partitions $\lambda$, including hooks and the $2\times 2$ box. We also prove combinatorially the existence of such nonnegative expansion when the Young diagram of $\lambda$ is a hook plus a box at the $(2,2)$ corner. We achieve this by evaluating Schubert polynomials at the Dunkl elements of the Fomin-Kirillov algebra and proving special cases of the nonnegativity conjecture of Fomin and Kirillov.This approach works in the more general setup of the (small) quantum cohomology ring of the complex flag manifold and the corresponding (3-point) Gromov-Witten invariants. We provide an algebro-combinatorial proof of the nonnegativity of the Gromov-Witten invariants in these cases, and present combinatorial expressions for these coefficients.

Locations

  • The Electronic Journal of Combinatorics - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Schur times Schubert via the Fomin-Kirillov algebra 2012 Karola Mészáros
Greta Panova
Alexander Postnikov
+ Schur times Schubert via the Fomin-Kirillov algebra 2012 Karola Mészáros
Greta Panova
Alexander Postnikov
+ PDF Chat A Murgnahan-Nakayama rule for Schubert polynomials 2014 Andrew Morrison
+ PDF Chat Flag Gromov-Witten invariants via crystals 2014 Jennifer Morse
Anne Schilling
+ Two Murnaghan-Nakayama rules in Schubert calculus 2015 Andrew Morrison
Frank Sottile
+ Two Murnaghan-Nakayama rules in Schubert calculus 2015 Andrew Morrison
Frank Sottile
+ PDF Chat Oriented Schubert calculus in Chow–Witt rings of Grassmannians 2020 Matthias Wendt
+ Oriented Schubert calculus in Chow-Witt rings of Grassmannians 2018 Matthias Wendt
+ Oriented Schubert calculus in Chow-Witt rings of Grassmannians 2018 Matthias Wendt
+ Gröbner geometry of Schubert polynomials 2001 Allen Knutson
Ezra Miller
+ Gr\"obner geometry of Schubert polynomials 2001 Allen Knutson
Ezra Miller
+ PDF Chat The Permutahedral Variety, Mixed Eulerian Numbers, and Principal Specializations of Schubert Polynomials 2021 Philippe Nadeau
Vasu Tewari
+ Quadratic Algebras, Dunkl Elements, and Schubert Calculus 1999 Sergey Fomin
Anatol N. Kirillov
+ PDF Chat Quantum Schubert polynomials 1997 Sergey Fomin
Sergei Gelfand
Alexander Postnikov
+ The permutahedral variety, mixed Eulerian numbers, and principal specializations of Schubert polynomials 2020 Philippe Nadeau
Vasu Tewari
+ Introductory Schubert calculus 2010 Veerle Ledoux
Simon J. A. Malham
+ PDF Chat Vanishing of Schubert Coefficients 2024 Igor Pak
Colleen Robichaux
+ PDF Chat Grassmannians, flag varieties, and Gelfand-Zetlin polytopes 2016 Smirnov Evgeny
+ Combinatorial Presentation of Schubert Polynomials 2024 Evgeny Smirnov
Anna Tutubalina
+ Restricting Schubert classes to symplectic Grassmannians using self-dual puzzles 2018 Iva Halacheva
Allen Knutson
Paul Zinn-Justin