The Johnson–Lindenstrauss Lemma Almost Characterizes Hilbert Space, But Not Quite

Type: Article

Publication Date: 2009-05-29

Citations: 17

DOI: https://doi.org/10.1007/s00454-009-9193-z

Locations

  • Discrete & Computational Geometry - View - PDF

Similar Works

Action Title Year Authors
+ The Johnson-Lindenstrauss lemma almost characterizes Hilbert space, but not quite 2008 William B. Johnson
Assaf Naor
+ The Johnson-Lindenstrauss lemma almost characterizes Hilbert space, but not quite 2009 William B. Johnson
Assaf Naor
+ Almost euclidean subspaces of a normed space 2006
+ K-metric and K-normed linear spaces: survey. 1997 Petr P. Zabrejko
+ PDF Chat On isosceles orthogonality and some geometric constants in a normed space 2022 ‎Debmalya Sain
Souvik Ghosh
Kallol Paul
+ Best approximation in 2-Normed almost linear space 2013 T. Markandeya Naidu
D. Bharathi
+ PDF Chat A Simple Proof of the Johnson–Lindenstrauss Extension Theorem 2019 Manor Mendel
+ A lower bound for the constant $$A_1 (X)$$ in normed linear spaces 2022 Hiroyasu Mizuguchi
+ Embedding normed linear spaces into $C(X)$ 2017 M. Fakhar
M. R. Koushesh
Mohammadreza Raoofi
+ A Simple proof of Johnson-Lindenstrauss extension theorem 2018 Manor Mendel
+ A Simple proof of Johnson-Lindenstrauss extension theorem 2018 Manor Mendel
+ Hilbert space 2020 Christer Bennewitz
Malcolm Brown
Rudi Weikard
+ Almost Euclidean subspaces of finite dimensional normed spaces 2015 Shiri Artstein-Avidan
Apostolos Giannopoulos
Vitali Milman
+ The Distorion Problem 1992 Edward Odell
Thomas Schlumprecht
+ The distortion of Hilbert space 1993 Edward Odell
Th. Schlumprecht
+ A characterization of the Euclidean space 2002 M. Zippin
+ The discrete version of Ostrowski's inequality in normed linear spaces. 2002 Sever S Dragomir
+ The Distorion Problem 1992 Edward Odell
Thomas Schlumprecht
+ PDF Chat Approximation in a Normed Linear Space 2006
+ The Hahn-Banach theorem for the normed spaces 2013 Manuel Ferreira