A Geometric Interpretation of the Metropolis-Hastings Algorithm

Type: Article

Publication Date: 2001-11-01

Citations: 68

DOI: https://doi.org/10.1214/ss/1015346318

Abstract

The Metropolis–Hastings algorithm transforms a given stochastic matrix into a reversible stochastic matrix with a prescribed stationary distribution. We show that this transformation gives the minimum distance solution in an $L^1$ metric.

Locations

  • Statistical Science - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Metropolis–Hastings from a stochastic population dynamics perspective 2003 Eric Renshaw
+ The Metropolis-Hastings algorithm 2015 Christian P. Robert
+ Geometric ergodicity of a random-walk Metropolis algorithm for a transformed density 2010 Leif T. Johnson
Charles J. Geyer
+ PDF Chat Understanding the Hastings Algorithm 2014 David D. L. Minh
Do Le Minh
+ What Do We Know about the Metropolis Algorithm ? 1998 Persi Diaconis
Laurent Saloff‐Coste
+ PDF Chat The Metropolis Algorithm 2000 Isabel Beichl
Frank Sullivan
+ Metropolis-Hastings algorithms 2006
+ PDF Chat Micro-local analysis for the Metropolis algorithm 2008 Persi Diaconis
Gilles Lebeau
+ PDF Chat On Hitting Time, Mixing Time and Geometric Interpretations of Metropolis–Hastings Reversiblizations 2019 Michael C. H. Choi
Lu‐Jing Huang
+ Metropolis Algorithm 2022 Masanori Hanada
So Matsuura
+ Metropolis–Hastings Algorithms with acceptance ratios of nearly 1 2008 Kengo Kamatani
+ Universality of the Langevin diffusion as scaling limit of a family of Metropolis-Hastings processes I: fixed dimension 2019 Michael C. H. Choi
+ Universality of the Langevin diffusion as scaling limit of a family of Metropolis-Hastings processes I: fixed dimension 2019 Michael C. H. Choi
+ Metropolis Jumping Rules 2020 Jun S. Liu
Chenguang Dai
+ PDF Chat Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions 2014 Samuel Livingstone
Mark Girolami
+ Algorithmes de Metropolis-Hastings 2011 Christian P. Robert
George Casella
+ Correction: Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm 2013 Leif T. Johnson
Charles J. Geyer
+ PDF Chat The Spectrum of the Independent Metropolis–Hastings Algorithm 2006 Jørund Gåsemyr
+ A Common Derivation for Metropolis-Hastings and other Markov Chain Monte Carlo Algorithms 2016 Khoa T. Tran
Robert Kohn
+ Computational Complexity of Metropolis-Hastings Methods in High Dimensions 2009 Alexandros Beskos
Andrew M. Stuart