Combinatorics of random processes and sections of convex bodies

Type: Article

Publication Date: 2006-09-01

Citations: 38

DOI: https://doi.org/10.4007/annals.2006.164.603

Abstract

We find a sharp combinatorial bound for the metric entropy of sets in R n and general classes of functions.This solves two basic combinatorial conjectures on the empirical processes.1.A class of functions satisfies the uniform Central Limit Theorem if the square root of its combinatorial dimension is integrable.2. The uniform entropy is equivalent to the combinatorial dimension under minimal regularity.Our method also constructs a nicely bounded coordinate section of a symmetric convex body in R n .In the operator theory, this essentially proves for all normed spaces the restricted invertibility principle of Bourgain and Tzafriri.

Locations

  • arXiv (Cornell University) - View - PDF
  • Annals of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Combinatorics of random processes and sections of convex bodies 2004 Mark Rudelson
Roman Vershynin
+ Combinatorics of random processes and sections of convex bodies 2004 Mark Rudelson
Roman Vershynin
+ Random processes via the combinatorial dimension: introductory notes 2004 Mark Rudelson
Roman Vershynin
+ PDF Chat Entropy and the combinatorial dimension 2003 Shahar Mendelson
R. Vershynin
+ PDF Chat Diameters of sections and coverings of convex bodies 2005 Alexander E. Litvak
Alain Pajor
Nicole Tomczak-Jaegermann
+ Limit Theorems in Discrete Stochastic Geometry 2012 Joseph E. Yukich
+ Entropy and the Combinatorial Dimension 2002 Shahar Mendelson
R. Vershynin
+ High dimensional random sections of isotropic convex bodies 2009 David Alonso‐Gutiérrez
Jesús Bastero
Julio Bernués
Grigoris Paouris
+ Convex hulls of random processes 1998 Ya. G. Sinaĭ
+ Ergodic theory and combinatorics 1984 Konrad Jacobs
+ Geometry of random sections of isotropic convex bodies 2016 Apostolos Giannopoulos
Labrini Hioni
Antonis Tsolomitis
+ PDF Chat Martin boundary of random walks in convex cones 2020 Jetlir Duraj
Kilian Raschel
Pierre Tarrago
Vitali Wachtel
+ PDF Chat Martin boundary of random walks in convex cones 2018 Kilian Raschel
Pierre Tarrago
+ Random Measures in Hilbert Space: Specialized Analysis 2011
+ PDF Chat A R\'enyi entropy interpretation of anti-concentration and noncentral sections of convex bodies 2024 James Melbourne
Tomasz Tkocz
Katarzyna Wyczesany
+ PDF Chat Random aspects of high-dimensional convex bodies 2000 Alexander E. Litvak
Nicole Tomczak-Jaegermann
+ Random inscribed polytopes in projective geometries 2020 Florian Besau
Daniel Rosen
Christoph Thäle
+ Random inscribed polytopes in projective geometries 2020 Florian Besau
Daniel Rosen
Christoph Thäle
+ Entropy, dimension and the Elton-Pajor Theorem 2002 Shahar Mendelson
Roman Vershynin
+ Distributional Characteristics of Random Convex Sets. 2008 Patricia Giurgescu