Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions

Type: Article

Publication Date: 2007-10-01

Citations: 179

DOI: https://doi.org/10.1215/s0012-7094-07-14015-8

Locations

  • Duke Mathematical Journal - View
  • Duke Mathematical Journal - View

Similar Works

Action Title Year Authors
+ Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions 2006 Terence Tao
Monica Vişan
Xiaoyi Zhang
+ Probabilistic well-posedness of the mass-critical NLS with radial data below <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2019 Gyeongha Hwang
+ Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data. 2005 Terence Tao
+ PDF Chat Blow-up criteria below scaling for defocusing energy-supercritical NLS and quantitative global scattering bounds 2023 Aynur Bulut
+ Blow-up criteria below scaling for defocusing energy-supercritical NLS and quantitative global scattering bounds 2020 Aynur Bulut
+ Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\R^{1+4}$ 2005 E. Ryckman
Monica Vişan
+ Global well-posedness and scattering of the defocusing energy-critical inhomogeneous nonlinear Schrödinger equation with radial data 2024 Dongjin Park
+ Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case 2016 Xing Cheng
Changxing Miao
Lifeng Zhao
+ PDF Chat Global well-posedness and scattering for the defocusing, L 2 -critical, nonlinear Schrödinger equation when d = 1 2016 Benjamin Dodson
+ Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data 2007 Changxing Miao
Guixiang Xu
Lifeng Zhao
+ PDF Chat The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions 2007 Monica Vişan
+ Nonlinear Schrodinger Equations at Non-Conserved Critical Regularity 2014 Jason Murphy
+ Global Well-posedness and Scattering for the Defocusing Cubic nonlinear Schrödinger equation in Four Dimensions 2011 Monica Vişan
+ The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher 2007 Rowan Killip
Monica Vişan
Xiaoyi Zhang
+ Corrigendum to “Global well-posedness and scattering of the defocusing energy-critical inhomogeneous nonlinear Schrödinger equation with radial data” [J. Math. Anal. Appl. 536 (2) (2024) 128202] 2024 Dongjin Park
+ PDF Global well-posedness and scattering for the defocusing, $L^{2}$-critical nonlinear Schrödinger equation when $d ≥3$ 2011 Benjamin Dodson
+ The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions 2005 Monica Vişan
+ Long time dynamics and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with spatially growing nonlinearity 2023 Van Duong Dinh
Mohamed Majdoub
Tarek Saanouni
+ PDF Chat Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case 2006 Carlos E. Kenig
Frank Merle
+ Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R^3 2004 Jim Colliander
Mark Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao

Works That Cite This (177)

Action Title Year Authors
+ PDF A smoothing property for the \( L^{2} \)-critical NLS equations and an application to blowup theory 2008 Sahbi Keraani
Ana Vargas
+ Global existence for semilinear Schrödinger equations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math>dimensions 2007 Hua Wang
Shangbin Cui
+ Global well-posedness for the mass-critical nonlinear Schrödinger equation on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="double-struck">T</mml:mi></mml:math> 2011 Yongsheng Li
Yifei Wu
Guixiang Xu
+ PDF Chat Numerical simulations for the energy-supercritical nonlinear wave equation 2020 Jason Murphy
Yanzhi Zhang
+ Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation 2017 Luiz Gustavo Farah
Carlos M. Guzmán
+ Resonant decompositions and the I-method for cubic nonlinear Schrodinger on R^2 2007 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ PDF Chat THE MASS-CRITICAL FOURTH-ORDER SCHRÖDINGER EQUATION IN HIGH DIMENSIONS 2010 Benoît Pausader
Shuanglin Shao
+ PDF Scattering for the cubic Klein–Gordon equation in two space dimensions 2011 Rowan Killip
Betsy Stovall
Monica Vişan
+ A pseudoconformal compactification of the nonlinear Schrodinger equation and applications 2009 Terence Tao
+ A pseudoconformal compactification of the nonlinear Schrödinger equation and applications 2006 Terence Tao