Krull dimension of power series rings over a globalized pseudo-valuation domain

Type: Article

Publication Date: 2009-09-12

Citations: 7

DOI: https://doi.org/10.1016/j.jpaa.2009.08.007

Locations

  • Journal of Pure and Applied Algebra - View

Similar Works

Action Title Year Authors
+ Power series rings over globalized pseudo-valuation domains 1988 Florida Girolami
+ The Krull dimension of power series rings over almost Dedekind domains 2015 Gyu Whan Chang
Byung Gyun Kang
Phan Thanh Toàn
+ The catenarian property of power series rings over a globalized pseudo-valuation domain 1989 Florida Girolami
+ PDF Chat Power series rings over a Krull domain 1969 Robert Gilmer
+ Krull dimension of power series rings over non-SFT domains 2018 Phan Thanh Toàn
Byung Gyun Kang
+ Krull Dimension of Polynomial and Power Series Rings 2012 John J. Watkins
+ Weak dimension of power series rings over valuation rings 2024 Adam Jones
+ Rings of formal power series over a Krull domain 1968 Robert Gilmer
William Heinzer
+ PDF Chat Power series rings over discrete valuation rings 1981 Jimmy T. Arnold
+ PDF Chat Global Dimension of Valuation Rings 1967 B. L. Osofsky
+ Krull property of generalized power series rings 2022 Mingyu Park
Dong Yeol Oh
+ On the generalized Krull property in power series rings 2020 Le Thi Ngoc Giau
Byung Gyun Kang
Phan Thanh Toàn
+ Galois Theory of Power Series Rings in Characteristic p 1970 Tzoung Tsieng Moh
+ Global dimensions of power series rings 2015 Samir Bouchiba
+ Global Krull Dimension and Global Dual Krull Dimension of Valuation Rings 2019 Toma Albu
Péter Vámos
+ Prime serial rings with krull dimension 1990 Mary H. Wright
+ PDF Chat Krull and global dimension of certain iterated skew polynomial rings 1992 David Jordan
+ Krull Dimension in Power Series Ring Over an Almost Pseudo-Valuation Domain 2010 Mohamed Khalifa
Ali Benhissi
+ PDF Chat Note on valuative dimension in power series rings 2014 Mohamed Khalifa
+ Valuations on power series rings in an arbitrary set of indeterminates 2024 Phan Thanh Toàn
Pham Thanh Tri
Thieu N. Vo