Type: Article
Publication Date: 1996-07-01
Citations: 29
DOI: https://doi.org/10.5565/publmat_40296_10
On the real line, let the Fourier transform of $k_n$ be $\hat k_n(\xi)=\hat k(\xi-n)$ where $\hat k(\xi)$ is a smooth compactly supported function. Consider the bilinear operators $ S_n(f,g)(x)=\int f(x+y)g(x-y)k_n(y)\,dy$. If $2\le p,q\le\infty$, with $1/p+1/q=1/2$, I prove that $$ \sum_{n=-\zI}^\zI\|S_n(f,g)\|_2^2\le{}C^2\|f\|_p^2 \|g\|_q^2\,. $$ The constant $C$ depends only upon $k$.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | A Littlewood-Paley Inequality for Arbitrary Intervals | 1985 |
Jos猫 L. Rubio de Francia |