On bilinear Littlewood-Paley square functions

Type: Article

Publication Date: 1996-07-01

Citations: 29

DOI: https://doi.org/10.5565/publmat_40296_10

Abstract

On the real line, let the Fourier transform of $k_n$ be $\hat k_n(\xi)=\hat k(\xi-n)$ where $\hat k(\xi)$ is a smooth compactly supported function. Consider the bilinear operators $ S_n(f,g)(x)=\int f(x+y)g(x-y)k_n(y)\,dy$. If $2\le p,q\le\infty$, with $1/p+1/q=1/2$, I prove that $$ \sum_{n=-\zI}^\zI\|S_n(f,g)\|_2^2\le{}C^2\|f\|_p^2 \|g\|_q^2\,. $$ The constant $C$ depends only upon $k$.

Locations

  • Publicacions Matem脿tiques - View
  • RACO (Revistes Catalanes amb Acc茅s Obert) (Consorci de Serveis Universitaris de Catalunya) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On bilinear Littlewood-Paley square functions 2012 P. K. Ratnakumar
Saurabh Shrivastava
+ A Remark on Bilinear Square Functions 2016 Loukas Grafakos
+ A remark on bilinear Littlewood鈥揚aley square functions 2014 P. K. Ratnakumar
Saurabh Shrivastava
+ On bilinear functions 1995 Edward Beltrami
+ PDF Chat On the bilinear square Fourier multiplier operators and related multilinear square functions 2017 Zengyan Si
Qingying Xue
K么z么 Yabuta
+ PDF Chat On Littlewood-Paley functions 2007 Leslie Cheng
+ PDF Chat A note on the bilinear Littlewood-Paley square function 2010 Parasar Mohanty
Saurabh Shrivastava
+ Lp estimates for non smooth bilinear Littlewood-Paley square functions on R 2008 Fr茅d茅ric Bernicot
+ L p estimates for non-smooth bilinear Littlewood鈥揚aley square functions on $${\mathbb{R}}$$ 2010 Fr茅d茅ric Bernicot
+ Boundedness of the bilinear Littlewood-Paley square function on variable Lorentz spaces 2017 脰znur Kulak
+ On the bilinear square Fourier multiplier operators and related multilinear square functions 2016 Zengyan Si
Qingying Xue
K么z么 Yabuta
+ PDF Chat On a Class of Bilinear Pseudodifferential Operators 2013 脕rp谩d B茅nyi
Tadahiro Oh
+ On bilinear Hilbert transform along two polynomials 2017 Dong Dong
+ On Bilinear Hardy鈥揝teklov Operators 2018 P. Jain
Saikat Kanjilal
V. Stepanov
E. P. Ushakova
+ On Bilinear Hardy鈥揝teklov Operators 2018 Pankaj Jain
Saikat Kanjilal
V. D. Stepanov
E. P. Ushakova
+ A Seeger-Sogge-Stein theorem for bilinear Fourier integral operators 2014 Salvador Rodr铆guez-L贸pez
David Rule
Wolfgang Staubach
+ A Seeger-Sogge-Stein theorem for bilinear Fourier integral operators 2014 Salvador Rodr铆guez-L贸pez
David Rule
Wolfgang Staubach
+ PDF Chat Bilinear operators on Herz-type Hardy spaces 1998 Loukas Grafakos
Xinwei Li
Dachun Yang
+ PDF Chat Bilinear and quadratic variants on the Littlewood-Offord problem 2012 Kevin Costello
+ $$M_{p}$$ weights for bilinear Hardy operators on $$\mathbb R ^{n}$$ 2013 Fayou Zhao
Zunwei Fu
Shanzhen Lu

Works Cited by This (1)

Action Title Year Authors
+ PDF Chat A Littlewood-Paley Inequality for Arbitrary Intervals 1985 Jos猫 L. Rubio de Francia