LIOUVILLE FIELD THEORY: A DECADE AFTER THE REVOLUTION

Type: Article

Publication Date: 2004-07-20

Citations: 340

DOI: https://doi.org/10.1142/s0217751x04019500

Abstract

We review recent developments (up to January 2004) of the Liouville field theory and its matrix model dual. This review consists of two parts. In part I, we review the bosonic Liouville theory. After briefly reviewing the necessary background, we discuss the bulk structure constants (the DOZZ formula) and the boundary states (the FZZT brane and the ZZ brane). Various applications are also presented. In part II, we review the supersymmetric extension of the Liouville theory. We first discuss the bulk structure constants and the branes as in the bosonic Liouville theory, and then we present the matrix dual descriptions with some applications. This review also includes some original material such as the derivation of the conjectured dual action for the [Formula: see text] Liouville theory from other known dualities.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • International Journal of Modern Physics A - View

Similar Works

Action Title Year Authors
+ The Liouville mode and string fields in matrix models 1990 Sumit R. Das
+ The three point function in Liouville and $\mathcal{N}=1$ Super Liouville Theory 2015 MartĂ­n Dionisio Arteaga Tupia
+ The three point function in Liouville and $\mathcal{N}=1$ Super Liouville Theory 2015 MartĂ­n Dionisio Arteaga Tupia
+ The duality of quantum Liouville field theory 2000 L. O’Raifeartaigh
Jan M. Pawlowski
V. V. Sreedhar
+ On Duality in $\mathcal{N}=2$ supersymmetric Liouville Theory 2020 Yu Nakayama
+ PDF Chat Liouville Theory: An Introduction to Rigorous Approaches 2024 Sourav Chatterjee
Edward Witten
+ FZZ-triality and large $\mathcal{N}=4$ super Liouville theory. 2021 Thomas Creutzig
Yasuaki Hikida
+ A função de três pontos nas teorias de Liouville e N = 1 super Liouville 2015 Martín Dionisio Arteaga Tupia
+ PDF Chat Duality in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mn /></mml:math>super-Liouville theory 2004 Changrim Ahn
Chanju Kim
Chaiho Rim
M. Stanishkov
+ PDF Chat A correspondence between WZW and Liouville theories on discs 2007 Kazuo Hosomichi
+ The Riemann–Liouville transformation 1981 Bertram Ross
+ On Duality in $\mathcal{N}=2$ supersymmetric Liouville Theory 2020 Yu Nakayama
+ PDF Chat Liouville quantum gravity and KPZ 2010 Bertrand Duplantier
Scott Sheffield⋆
+ PDF Chat Duality in Liouville theory as a reduced symmetry 1999 L. O’Raifeartaigh
V. V. Sreedhar
+ PDF Chat Zamolodchikov relations and Liouville hierarchy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="italic">SL</mml:mi><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mtext>,</mml:mtext><mml:mi>R</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>k</mml:mi></mml:msub></mml:math> WZNW model 2005 Gaetano Bertoldi
Stefano Bolognesi
GastĂłn Giribet
Marco Matone
Yu Nakayama
+ PDF Chat A paradigm of open/closed duality Liouville D-branes and the Kontsevich model 2005 Davide Gaiotto
Leonardo Rastelli
+ PDF Chat Liouville theory with a central charge less than one 2015 Sylvain Ribault
Raoul Santachiara
+ PDF Chat Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory 2013 Glenn Barnich
Andrés Gomberoff
Hernán A. González
+ PDF Chat Resurgence in Liouville Theory 2024 Nathan Benjamin
Scott Collier
Alexander Maloney
Viraj Meruliya
+ PDF Chat Surface operators and separation of variables 2016 Edward Frenkel
Sergei Gukov
Jörg Teschner